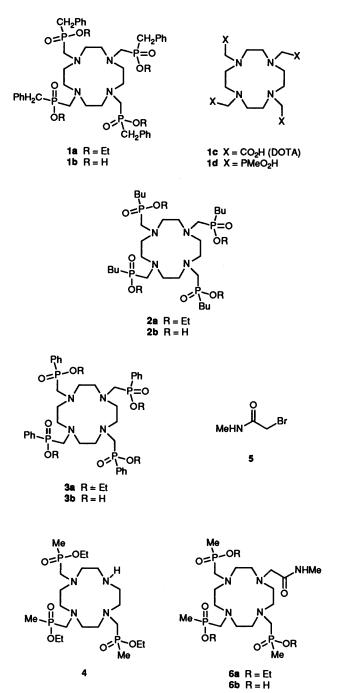
Synthesis of Charged and Uncharged Complexes of Gadolinium and Yttrium with Cyclic Polyazaphosphinic Acid Ligands for *in vivo* Applications

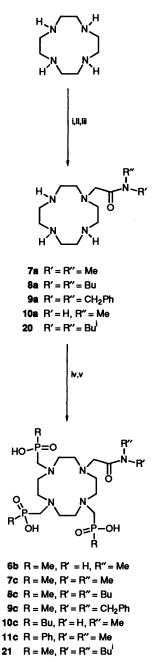
Kanthi P. Pulukkody, Timothy J. Norman, David Parker,* Louise Royle† and (in part) Christopher J. Broan Department of Chemistry, University of Durham, South Road, Durham, UK, DH1 3LE

The synthesis of 18 new macrocyclic complexing agents incorporating phosphinic acid (and carboxylic acid) groups is reported, based on the 1,4,7,10-tetraazacyclododecane ring. Through selective functionalisation of one ring nitrogen or by changing the nature of the P-substituent, anionic, neutral and cationic complexes of yttrium and gadolinium may be prepared of varying lipophilicity. Diamagnetic complexes have been characterised by ¹H, ³¹P and ⁸⁹Y NMR spectroscopy, and the rate of uptake of ⁹⁰Y of selected ligands compared. The kinetics of dissociation of nine gadolinium complexes has been measured in the pH range 1–2 using ¹⁵³Gd-labelled complexes. Charge-neutral complexes dissociate more slowly than their anionic analogues, and the phosphinate complexes, although slightly less stable than their carboxylate analogues, are nevertheless sufficiently kinetically inert for *in vivo* applications.

The common theme which has unified our recent studies of the behaviour of metal complexes and their conjugates in vivo is that the complexes should be kinetically inert with respect to acid- or cation-promoted dissociation pathways.¹ This has been apparent in the development of antibody conjugates radiolabelled with copper,² indium or gallium,³ and yttrium⁴ (⁹⁰Y, β^- , t_{\pm} 64 h) for effective tumour targeting. In radioimmunotherapy with ⁹⁰Y-labelled conjugates, the need for high kinetic stability is particularly acute. Premature decomplexation of ⁹⁰Y (mediated by acid catalysis and/or cation assisted pathways),⁵ severely limits the dose which may be administered of this therapeutic isotope due to localisation of ⁹⁰Y in the bone/bonemarrow resulting in, for example, myelosuppression.¹ A similar limitation in the amount of complex which can be administered is encountered in the use of paramagnetic gadolinium complexes which are used in magnetic resonance imaging (MRI) as contrast agents.⁶ The aquo-gadolinium ion is also bone-seeking and toxic (in animals) (LD₅₀ in mice/rats of 0.38 mmol kg⁻¹) and is given to a patient in the form of a stable complex (e.g. [Gd.DTPA]²⁻ or [Gd.DOTA]⁻, where typically a solution containing 6-8 g of the complex is injected). The object of current research in this area is to devise methods of targeting the paramagnetic complex to selected tissues, and a first step in this direction has been the discovery that gadolinium complexes of certain analogues of DTPA (e.g. BOPTA⁷ and EOBDTPA)⁸ clear via the biliary system rather than the renal system. Although DTPA-based ligands are widely used for this purpose, they are not totally kinetically inert in vivo, and the gadolinium complex (and to a greater extent ⁹⁰Y complexes) dissociates measurably resulting in deposition of gadolinium (or ⁹⁰Y) in the liver and skeleton.^{9,}[‡] It is generally accepted that the complexes of Gd and Y with macrocyclic ligands are more kinetically stable in vivo than DTPA-based ligands, and should therefore avert any long term (i.e. chronic, rather than acute) toxicity problems.

With this in mind, we have been studying the properties of a series of azaphosphinic acid macrocyclic ligands¹⁰ based on


the tetraazacyclododecane (12-N₄) skeleton which is found in DOTA. An intrinsic advantage of the >NCH₂PRO₂H moiety (over CH₂CO₂H) is that structural variation is readily achieved at the P–R group, allowing for example easy linkage to a protein and control over ligand and complex lipophilicity. A series of charged (anionic and cationic) and neutral yttrium and gadolinium complexes has been prepared, with the objective of defining the structural and electrostatic features which determine the *in vivo* biodistribution. The synthesis and complexation behaviour of these ligands is reported herein, while the biodistribution results are being described elsewhere.⁹ A preliminary account of some of this work has appeared.^{11.12}

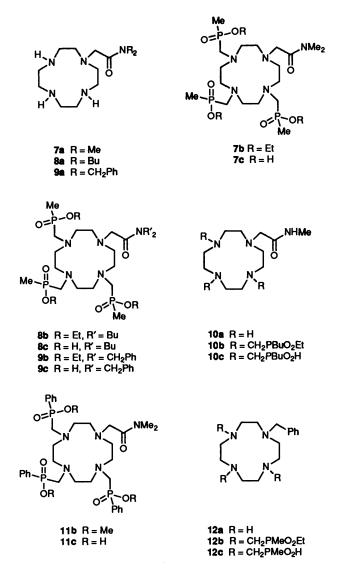

Results and Discussion

Ligand Syntheses.---The synthesis of the symmetrically substituted tetraphosphinic acid derivatives, 1-3, followed the methods described in our earlier reports.¹¹⁻¹³ Condensation of paraformaldehyde and tetraazacyclododecane in dry tetrahydrofuran led to successive formation of the imine which was trapped by the appropriately substituted dialkoxyphosphine, $RP(OR')_2$ to yield, after an Arbuzov rearrangement, the tetraphosphinate esters, 1a-3a. Acid hydrolysis (6 mol dm⁻³ HCl, 110 °C) yielded the aminophosphinic acid, usually as the dihydrochloride salt, although the benzylphosphinic acid 1a could be recrystallised from methanol to yield the zwitterion. In the case of the methylphosphinate reaction, the trisubstituted derivative 4 was also isolated in moderate yield, following chromatographic separation of the tetraester. This allows, in principle, the synthesis of a wider range of tribasic phosphinate ligands wherein the eighth coordination site can be varied by alkylation of the unique secondary amine in 4. Clearly many different functional groups can be introduced at this stage, but in order to ligate effectively to the bound polarising trivalent cation, an amide carbonyl group is most appropriate, and offers further flexibility in respect of variation of the substituents at nitrogen (e.g. for linkage, or introduction of additional lipophilic groups). Reaction of 4 with N-methyl-2-bromoethanamide (DMF, K_2CO_3), 5, gave the monoamide 6a (63%) which was hydrolysed (KOH, H₂O) to the triphosphinic acid **6b** at room temperature. A limitation of this strategy is the poor yield (24%) of the triphosphinate 4, which is itself simply an intermediate in the synthesis of the tetraphosphinates. A more

[†] Present address: MRC Radiobiology Unit, Chilton, Didcot, OX11 0RD.

[‡] Similar conclusions are being drawn for Gd complexes: P. Wedeking,
K. Kumar and M. F. Tweedle, *Magn. Reson. Imag.*, 1992, 10, 641;
W. P. Cacheris, S. C. Quay and S. M. Rocklage, *Magn. Reson. Imag.*, 1990, 8, 467.

Scheme 1 Reagents and conditions: i, $Mo(CO)_6$, Bu_2O ; ii, $BrCH_2$ -CONR'R", DMF; iii, HCl, H_2O , air; iv, $RP(OMe)_2$, THF, $(CHO)_n$; v, OH^-


effective route involves monoalkylation of the starting tetraazacyclododecane $(12-N_4)$ followed by introduction of the desired alkylphosphinate residues.

Following the report of the use of the octahedral chromium tricarbonyl complex of tetraazacyclododecane ¹⁴ as a protecting group for three of the ring nitrogens in 12-N₄, we have used the related molybdenum complex in a parallel manner. Reaction of tetraazacyclododecane with molybdenum hexacarbonyl in dibutyl ether results in formation of the bright yellow molybdenum tricarbonyl complex. This was suspended in dimethylformamide and the appropriate α -bromoamide added. Decomplexation of the molybdenum moiety in aqueous acid allowed the isolation of the monoalkylated amine (Scheme 1). Yields varied from 78 to 87%, and the conversion of the monosubstituted derivatives 7a-12a to the various phosphinate esters and acids, 7b-12b and 7c-12c proceeded readily. Selective hydrolysis of the amide-triesters may be undertaken either

using base (aq. KOH, 20 $^{\circ}$ C) or acid (HBr-AcOH-PhOH) to leave the amide intact.

In order to prepare yttrium and gadolinium complexes that bore a net positive charge, a set of ligands was synthesised with a pendant alkylammonium or tetraalkylammonium functional group. In the latter case reaction of the $[12-N_4-Mo(CO)_3]$ complex, 18, with the cationic α -bromoamide, 14, yielded the monoamide 13a which was converted into the triester 13b (K₂CO₃/BrCH₂CO₂Et/DMF) and hence the triacid 13c. The primary alkylammonium esters and acids 25-29 were prepared in a similar manner (Scheme 2), using the *p*-methoxybenzenesulfonyl group as the amine protecting group. This is readily removed with HBr-AcOH-PhOH. The triacids 26 and 29 were easily isolated as their tri-hydrobromide salts from the crude reaction mixture, following addition of diethyl ether.

It is particularly notable that the compounds 26 and 29 are

readily prepared in good yield (e.g. 63% for **26a**) in a short (three overall steps) synthetic sequence from the readily available tetraazacyclododecane (12-N₄) and the easily prepared α -bromoamide, **17**. These ligands are achiral bifunctional complexing agents and the pendant primary amine group may be transformed into an active ester or maleimide for protein conjugation.¹⁵ Such a versatile synthetic route should be compared with the more lengthy synthetic methods reported earlier, involving preparation of enantiopure C-functionalised 12-N₄-based complexing agents^{4.16,17} or of racemic Nfunctionalised analogues.¹⁷

Complex Characterisation.—Reaction of Y_2O_3 or Gd_2O_3 with an equimolar amount of the tetrabasic ligands **1b–3b** (pH 2–2.5, 80 °C, 12 h) gives rise to an intermediate N-bound complex (as observed by ¹H NMR spectroscopy) which is rapidly converted (presumably with concomitant proton loss) to the octadentate complex at pH ≥ 5.5 . In each case, one major ($\ge 90\%$) diastereoisomer may be observed by ³¹P or ¹H NMR spectroscopy (on binding to a Y or Gd, a new stereogenic centre is created at each phosphorus) and in the ³¹P NMR spectrum, coupling to the bound yttrium (⁸⁹Y, $I = \frac{1}{2}$, 100%; ²J = 5 Hz) was observed. Representative ¹H NMR spectra are given in Fig. 1 for [Y•1b]⁻ and [Y•1d]⁻ and assignments were made with the aid of ¹H–¹H and ³¹P–¹H COSY spectra. For each complex four of the ring protons are shifted to lower frequency (at *ca.* 2.3 ppm) and they are coupled to a multiplet

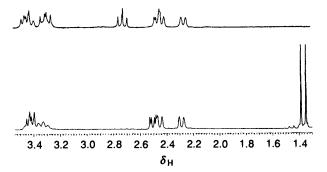
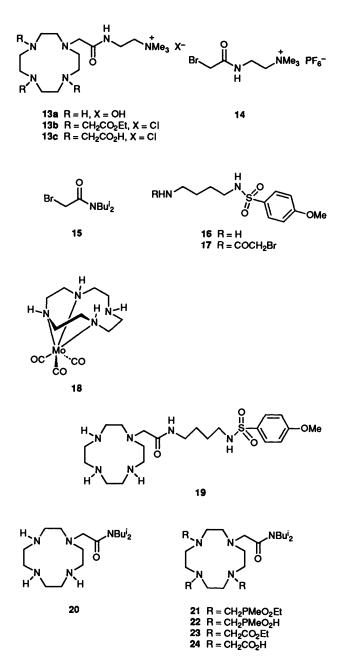



Fig. 1 ¹H NMR spectra (D_2O ; pD = 5.5, 293 K; 400 MHz) of [Y-1b]⁻ and [Y-1d]⁻ (lower)

centred at *ca*. 3.45 ppm. The other ring protons (as an AA'BB' multiplet) resonate as two multiplets centred at 2.45 and 3.30 ppm. For the benzylphosphinate complex, the diastereotopic benzyl methylene protons resonate as an ABX ($X = {}^{31}P$) system at 2.7 and 3.3 ppm. For both complexes the NCH₂P

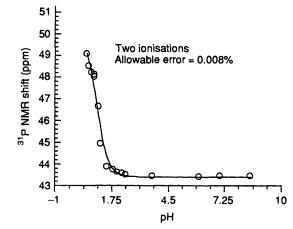
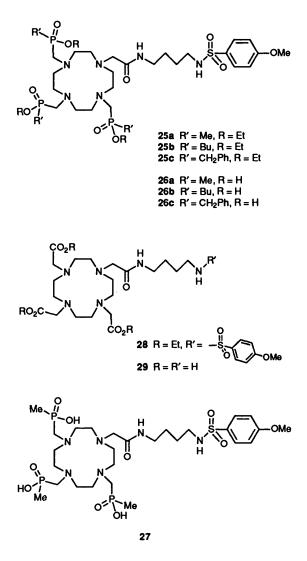



Fig. 2 Variation of δ_P with pH (293 K, H₂O), in [Y-1b]⁻ showing the agreement between observed (O) and calculated (—) values. The calculations assume that there are two closely spaced protonations (pK₁ = 1.28, pK₂ = 1.15). Details of the model used (including a comparison with a single protonation step) are given in the Appendix.

protons resonate as similar ABX multiplets at *ca.* 2.45 and 3.4 ppm.

In the case of $[Y\cdot\mathbf{1b}]^-$, evidence for the minor diastereoisomer is most apparent in the appearance of a minor doublet to higher frequency of the major resonance for the P-methyl doublet at *ca*. 1.4 ppm. It is very likely that in each case, the Palkyl substituent is disposed away from the N₄-ring, so that the

 Table 1
 ⁸⁹Y Chemical shift data for macrocyclic complexes^a

		_
Complex	δ_{Y}	
[Y•1c] [−]	+111.8	
[Y•EDTA]⁻	+ 123.5	
ŢŶ∙DTPAŢ⁻ſ	+81.6	
[Y·1d] ^{-b}	+ 156.8	
[̈Y•1b]¯ ⁺	+ 152.8	
Ţ 7.8 c1¯	+ 168.3	
[̈́Y•24]¯	+111.3	
[Y•27]	+ 152.0	

^a In H₂O (pH 6.5); [complex] ca. 0.15 mol dm⁻³; T = 23 °C; shifts relative to 1 mol dm⁻³ Y Cl₃ ($\delta = 0$). Values obtained were the same (±0.1 ppm) in H₂O and D₂O. ^b Observed as a quintet with $J_{YP} = 5$ Hz. ^c The yttrium complex of the dibenzyl-amide derivative of DTPA gave an ⁸⁹Y NMR shift of +80.6 ppm.


major diastereoisomer observed comprises a 50:50 mixture of the enantiomeric (RRRR) and (SSSS) complexes,* each of which is of a defined helicity. Both $[Y \cdot 1b]^-$ and $[Y \cdot 1d]^$ exhibited relatively little variation in their ¹H NMR spectra (D₂O) in the temperature range 5-75 °C. This may be contrasted with the behaviour of [Y.DOTA] - in which pronounced fluxional behaviour was observed ($T_c = 325$ K), in a similar manner to that reported for the lanthanide complexes of DOTA.^{19.20} This dynamic process observed with DOTA complexes was initially considered to be an 'ethylene inversion' of the rigid five-membered-ring chelates (NCCN-Y). It is now established ²⁰ to arise from a 'concerted sliding motion' of the four oxygen donor atoms on the surface of the lanthanide (or Y) ion (via a prismatic transition state structure), with the conformation of the macrocyclic ring being conserved (i.e. rigid).

In the ³¹P NMR spectrum of $[Y\cdot\mathbf{lb}]^-$, no variation of δ_P with pH was discerned in the pH range 2–11. Under more acidic conditions, the observed shift increased, displaying a quite marked 'end-point' at around pH 1.1 (Fig. 2). The inflection around pH 1.1 was fitted (using a simple curve-fitting procedure)²¹ to two closely separated protonation steps. Whilst this fitting procedure does not unequivocally reproduce the observation variation, it does suggest that successive protonation of $[Y\cdot\mathbf{lb}]^-$ is likely over a narrow pH range.

In the preparation of the charge neutral yttrium and gadolinium complexes of the tribasic ligands (e.g. with 8c-10c, 27 and 24), purification was effected by column chromatography on neutral alumina. Again, a single major diastereoisomer was observed in the ³¹P NMR spectra of each of the diamagnetic chiral complexes. In [Y-8c], for example, three closely spaced yttrium-coupled doublets were observed in the ³¹P NMR spectrum, one for each non-equivalent phosphorus atom $(\delta_{\rm P} = 44.45, 43.8 \text{ and } 43.2; J_{\rm YP} = 5 \text{ Hz})$. Assignment of the ¹H NMR spectrum of [Y-8c] (shown as the ³¹P decoupled spectrum in Fig. 3), was made with the aid of 2D ¹H-¹H and ³¹P-¹H COSY experiments. The NCH₂CON protons resonate as a simple 'AB' pair of doublets (${}^{3}J = 16.5$ Hz) to higher frequency of all other resonances. The P-coupled methyl groups are non-equivalent, and the diastereotopic methylene protons in the NCH₂P groups are highly anisochronous (resonating as two 3 H multiplets at 2.68 and ca. 3.58 ppm).

For each yttrium complex, the ⁸⁹Y NMR spectrum was acquired within 8 h (24.5 MHz, H_2O), without the addition of a relaxation agent, typically using 0.3 mol dm⁻³ solutions. A 90° pulse with a 30 s delay was used, in order to minimise the

^{*} In the case of [Y-1b]⁻, a preliminary crystal structure analysis has confirmed this supposition and also shows that the yttrium is in a square antiprismatic arrangement and there is *no* yttrium-bound water molecule.¹⁸

Scheme 2 Reagents and conditions: i, RP(OEt)₂, (H₂CO)_n, THF, 100 °C, 18 h; ii, BrCH₂CO₂Et, K₂CO₃, EtOH, 80 °C, 18 h; iii, HBr, AcOH, PhOH, 100 °C, 2 days; iv, KOH(aq), room temp., 18 h; v, HBr, AcOH, PhOH, 100 °C, 2 days

problems associated with the long relaxation times encountered in ⁸⁹Y NMR.²² Chemical shift data are collated in Table 1 and, while there is no clear trend in $\delta_{\rm Y}$ in respect of the number of bound nitrogen or oxygen atoms, certain general features can be distinguished. The phosphinate complexes resonate to higher frequency (*ca.* 40 ppm) of their carboxylate analogues, and the anionic and charge neutral complexes give very similar shifts (*cf.* [Y•1c]⁻ *vs.* [Y•24] and [Y•DTPA]²⁻ *vs.* the neutral dibenzylamide analogues, Table 1). Notwithstanding the known and substantial solvent isotope effect (4.3 ppm H₂O *vs.* D₂O) for the ⁸⁹Y shift of the aquo-ion, no difference in ⁸⁹Y shift was observed for $[Y \cdot 1b]^-$, $[Y \cdot 1c]^-$ or even $[Y \cdot EDTA]^-$ on changing from H_2O to D_2O . This lack of variation precluded any conclusions being made about the solvation state of the bound yttrium ion.

Kinetics of Association and Dissociation.—A key feature in the development of radioimmunotherapy is the requirement that the bifunctional complexing agent should undergo efficient and rapid radiolabelling, under ambient conditions of pH and temperature, without significant non-specific labelling of the protein. Working at concentrations of the macrocyclic ligand

	Ligand						
t/min	1c	1d (N ₄ P ₄ Me ₄)	6b (N ₄ P ₃ CH ₂ CONHMe)	8c (N ₄ P ₃ CONBu ₂)	26a $[N_4P_3(CH_2)_4NH_3^+]$	29 [N ₄ C ₃ (CH ₂) ₄ NH ₃ ⁺]	
1	54.4	8.8	2.0	5.9	17.4	3.4	
2	80.5	18.3	4.1	12.0	36.2	8.9	
5	98.5	55.2	12.6	35.2	78.5	23.6	
10	99.7	85.3	24.7	61.1	90.2	42.8	
15			35.8	78.7	97.4	59.9	
20		92.6	45.4	86.8		67.6	
30		93.4	58.4	90.2		81.3	
60			79.8			91.8	

 Table 2
 % ⁹⁰Y Uptake by charged and uncharged ligands⁴

^a [Ligand] 5 μ mol dm⁻³; pH 6.5; T = 37 °C; 0.2 mol dm⁻³ NH₄OAc.

that mirror the effective concentration of complexing agent on a conjugated antibody (5 μ mol dm⁻³, 37 °C, pH 6.5, NH₄OAc 'buffer'), the rates of ⁹⁰Y uptake by various ligands have been compared (Table 2). Using ⁹⁰Y of the highest purity available,* the forward rate of ⁹⁰Y binding was measured by sampling the incubation at a fixed time interval, scavenging any 'free' yttrium with an excess of DTPA. The neutral or monoanionic complexes of the ligand screened elute much more quickly than [Y•DTPA]²⁻ on an anion-exchange HPLC column allowing separation and quantitation (*via* counting the activity with a radiometric detector). All of the ligands with the exception of **6b**, gave a radiolabelling yield of \geq 90% within 60 min, and the binding of ⁹⁰Y by 1c (DOTA), 1d and 26a was particularly rapid.

The rates of dissociation of ⁹⁰Y from its complexes with 1d

* ⁹⁰Y was purchased from Amersham, and is relatively free from competing metal ions (as deduced by ICP-mass spectrometry) such as Zn^{2+} , Cu^{2+} , Ni^{2+} and Ca^{2+} . Such cationic impurities may severely limit the radiolabelling yield which can be achieved at low concentrations of these macrocyclic ligands.

and 1c were compared using methods reported earlier.⁵ As is evident from the data in Table 3, the yttrium complex of 1d is less kinetically stable than that of DOTA, 1c, although it shows a less steep dependence on pH. Similar behaviour is shown with the gadolinium complexes, which are generally less sensitive to acid-catalysed dissociation than their yttrium analogues. In the complexes of DOTA the yttrium complex is 5-6 times more labile than the gadolinium analogue at a given pH, whereas with the phosphinate complexes of 1d this difference is less marked and the rate difference is only a factor of 2-3. It is particularly notable that the charge-neutral complexes of yttrium and gadolinium (e.g. with 8c-10c) are more kinetically stable at a given pH than their anionic analogues, and exhibit a reduced dependence of rate with pH (e.g. [Gd•9c]: $t_{\frac{1}{2}}$ (pH 1.0) = 44.9 h, cf. $t_{\frac{1}{2}}$ (pH 2.0) = 194 h). Furthermore, the gadolinium complex with ligand 8c is more stable with respect to dissociation at pH 1 than [Gd.DOTA] itself. Such kinetic stability may accord with a reduced tendency of the neutral complexes to protonate, to form the more labile protonated species.⁵

The dissociation of [90 Y•1d] (Fig. 4), has been examined in

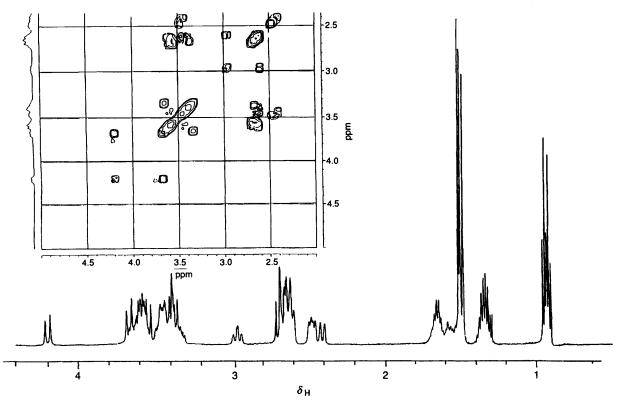
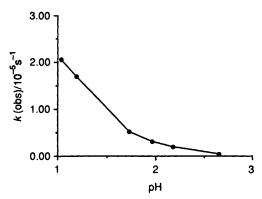


Fig. 3 ³¹P Decoupled ¹H NMR spectra of [Y-8c]⁻ (293 K; 500 MHz; D₂O) and its partial ¹H-¹H COSY spectrum


Table 3 Kinetics of dissociation of ⁹⁰Y and ¹⁵³Gd complexes (310 K)*

Complex	pН	$k_{obs}/10^{-6} \text{ s}^{-1}$ (sd in parentheses)	<i>t</i> ₄ /h
		(su in parentileses)	
[Y.DOTA] ⁻	1.0	15.0 (0.5)	12.8
	1.5	1.88 (0.03)	102
	2.0	0.33 (0.01)	583
[Y•1d] ⁻	1.0	21.0 (0.5)	9.17
	1.5	9.6 (0.2)	20.1
	2.0	3.1 (0.1)	62.1
[Gd•DOTA] ⁻	1.0	3.2 (0.03)	60.2
	1.5	0.9 (0.004)	214
	2.0	0.05 (0.005)	3929
[Gd•1d]-	1.0	10.4 (0.1)	18.5
	1.5	4.6 (0.03)	41.6
	2.0	1.1 (0.03)	171
[Gd-1b] -	1.0	23.9 (2)	8.1
	1.5	9.1 (0.9)	21.1
	2.0	2.8 (0.14)	69.0
[Gd•2b]-	1.0	36.9 (0.6)	5.2
	1.5	20.1 (0.3)	9.6
	2.0	7.08 (0.1)	27.2
[Gd•3b]-	1.0	77.7 (0.6)	2.5
	1.5	36.4 (0.3)	5.3
	2.0	14.7 (0.02)	13.1
[Gd•9c]	1.0	4.3 (0.08)	44.9
	1.5	1.6 (0.09)	118
	2.0	1.0 (0.06)	192
[Gd-8c]	1.0	1.3 (0.02)	153
	1.5	0.49 (0.02)	389
	2.0	0.20 (0.02)	943
[Gd•10c]	1.0	4.1 (0.09)	47
	1.5	1.5 (0.04)	127
	2.0	0.45 (0.02)	427

* Note added in proof. The 90 Y complex of **9c** is considerably more stable kinetically, than [Y-DOTA]: $t_{\frac{1}{2}} = 145$ h (pH 1), 379 h (pH 1.5) and 989 h (pH 2).

more detail.[†] The effect on the rate of varying the ionic strength of the medium was examined. The observed rate at pH 1.05, *decreased* in an approximately linear manner as the ionic strength was increased (using NMe₄NO₃) from 0.1 to 1.0 mol dm⁻³ (k_{obs} decreasing from 2.1 × 10⁻⁵ to 0.6 × 10⁻⁵ s⁻¹). Given that this is unlikely to reflect the interaction of two oppositely charged ions in the rate-limiting step (H₃O⁺ must surely interact with a cationic or neutral protonated yttrium species),⁵ the results may simply be related to the perturbation of the equilibrium constant for successive protonation. As *I* increases, the formation of the more highly charged species will be favoured (*e.g.* in H₃O⁺ + [YLH₂]⁺ \Longrightarrow [YLH₃]²⁺ + H₂O, the equilibrium shifts to the right as *I* is increased).

In addition, the effect on the rate of dissociation of $[Y\cdot 1b]^-$ of adding a divalent cation was examined using Ca²⁺ as the additive. Relatively large concentrations of added calcium were required in order to increase significantly the rate of dissociation $(k_{obs} \text{ increased by a factor of four as } [Ca] \text{ went from } 0.1 \text{ to } 1.0 \text{ mol } dm^{-3})$. However, these results clearly show that added

Fig. 4 Rate of dissociation of $[Y-1b]^-$ (310 K; I = 0.1) as a function of pH

cations can cause an effect on the dissociation rate, although the acid-catalysed pathway is likely to dominate *in vivo*, where the relative concentrations of free Ca²⁺ and free Zn²⁺ are low (*e.g.* 1.26 mmol dm⁻³ Ca²⁺, 10^{-5} mol dm⁻³ Zn²⁺ in serum).

Conclusions

It is slowly becoming generally accepted that the more reliable guide to predicting the stability of metal complexes *in vivo* is to examine the rate of dissociation at low pH *rather* than consider the relative magnitude of equilibrium stability constants.^{1,1,4,9,25} Correlation of the rates of dissociation measured in this work, with the biodistribution data for the ¹⁵³Gd-radiolabelled (and certain ⁹⁰Y-labelled) complexes discussed here and reported elsewhere⁹ is good. As discussed elsewhere,⁹ the *in vivo* behaviour of charged and uncharged gadolinium complexes follows a simple rule. Anionic lipophilic complexes excrete predominantly *via* the biliary system, whereas the neutral and cationic complexes prepared herein are excreted *via* the renal route. Such a simple structure–activity relationship, whilst hinted at by earlier work ^{6,7,8} has not been reported previously.

It is clear that the gadolinium complex of 1b is an attractive candidate as an MRI imaging agent. It is quite stable *in vivo* (no deposition of 153 Gd in the liver or bone was noted after 7 days),⁹ is easily synthesised and purified, and clears with high specificity *via* the biliary system, permitting selective imaging of the liver/bile-duct/gall bladder, and in particular the intestinal tract.²⁴

The short synthesis of the bifunctional complexing agents **26a** and **29** (multigram quantities have been prepared within 8 days by this route) their efficient radiolabelling by ⁹⁰Y, and the ease of conjugation to a protein or other targeting vehicle also bodes well for their use in selective tumour targeting, for example, in a conjugate with a humanised monoclonal antibody fragment.

Finally the versatility of macrocyclic azaphosphinic acids as complexing agents for *in vivo* usage has been clearly demonstrated, with the ease of substitution and functionalisation at nitrogen and phosphorus aiding considerably the design of complexes with specific properties.

Experimental

Column chromatography was carried out using neutral

[†] The rate data for the dependence on *I* and $[Ca^{2+}]$ were obtained using ³¹P NMR spectroscopy, measuring the disappearance of the ³¹P resonance at δ_P 47.4 (pH 1.05) due to the complex. Good agreement was obtained, in control experiments, with the rates determined using the radiolabelled complex.

[‡] For [Gd·1d]⁻, the 1:1 formation constant (298 K, I = 0.1) is 19.8, compared to 25.6 for [Gd·DOTA]⁻ and 22.4 for [Gd·DTPA]²⁻ measured under the same conditions.²³ It is well-established that [Gd·DTPA]²⁻ is considerably *less* stable *in vivo* than either [Gd·1d]⁻ or [Gd·DOTA]⁻ as evidenced by the slow release of Gd and deposition in the bone and liver.⁹

Table 4 Typical data set for kinetic run

	Concentration/mol dm ⁻³				
t/min	Runl	Run 2	Run 3	Run 4	Mean
20	0.940	0.945	0.944	0.936	0.941
40	0.903	0.911	0.896	0.898	0.898
60	0.875	0.873	0.881	0.870	0.875
80	0.857	0.863	0.854	0.863	0.859
110	0.838	0.837	0.818	0.827	0.830
140	0.792	0.789	0.788	0.788	0.789
170	0.781	0.762	0.766	0.756	0.766
260	0.682	0.681	0.685	0.683	0.683
320	0.647	0.642	0.665	0.640	0.648
480	0.598	0.592	0.599	0.589	0.595

alumina (Merck Art 1077) which had previously been treated with EtOAc. Analytical and semi-preparative HPLC was performed with a Varian Vista 5500/Polychrome 9060 instrument fitted with either cation exchange ('Synchropak' CM 300), anion exchange ('Synchropak' AX 100) or reverse phase columns ('Spherisorb' 5 ODS2). Flow rates of 1.4 and 4.0 cm³ min⁻¹ were used for analytical and semi-preparative columns respectively. Column and gradient elution conditions were as follows: cation exchange, t = 0 min, 80% H₂O, 0% aq. NH₄OAc (1.0 mol dm⁻³, pH 5.6), 20% MeCN; t = 5 min, 60% H_2O , 20% aq. NH_4OAc , 20% MeCN; t = 10 min, 0% H_2O , 80% aq. NH₄OAc, 20% MeCN. For anion exchange: t = 0 min, 70% H₂O, 10% aq. NH₄OAc, 20% MeCN; t = 20 min, 0% H_2O , 80% aq. NH_4OAc , 20% MeCN. For reverse phase: t = 0min, 95% H₂O, 0% aq. NH₄OAc, 5% MeCN; t = 20 min, 5% H₂O (0.1% trifluoroacetic acid), 0% NH₄OAc, 95% MeCN (0.1% trifluoroacetic acid). Solvents used were dried from an appropriate drying agent, and water was purified by the Milli Q system. IR spectra were recorded with a Perkin-Elmer 577 spectrometer, ¹H, ¹³C and ³¹P NMR spectra were obtained with a Bruker AC 250 operating at 250.13, 62.90 and 101.1 MHz, respectively. ⁸⁹Y NMR spectra were recorded on a Bruker AM500 operating at 24.5 MHz (using a 30 s pulse delay, and 0.3 mol dm^{-3} solutions). All coupling constants are in Hz. Mass spectra were recorded with a VG 7070E spectrometer operating in CI, DCI or FAB modes with DCI samples presented as dilute MeOH solutions and ammonia as the impingent gas. m-Nitrobenzyl alcohol or glycerol were used as the matrix for FAB analyses. Reactions involving molybdenum tricarbonyl intermediates were carried out under an atmosphere of dry argon.

Kinetics of Dissociation.—The methods used to monitor the rate of gadolinium (and yttrium) dissociation from the complexes at 310 K as a function of pH were the same as those described earlier.⁵ Values quoted for the observed rate of dissociation represent the mean value of three or four separate determinations. A typical data set is given in Table 4, for the dissociation of [⁹⁰Y·1d]⁻ at pH 1.0, giving the concentration of the intact complex (t = 0; 1) as a function of time (min) for four independent experiments, for each of which a correction due to the decaying activity of the ⁹⁰Y has been made (*n.b.* this correction was not applied for ¹⁵³Gd labelled complexes: $t_{\frac{1}{2}}$ ⁹⁰Y = 64 h; $t_{\frac{1}{2}}$ ¹⁵³Gd = 242 days). Values of k_{obs} (s⁻¹) and $t_{\frac{1}{2}}$ are given in Table 3.

Kinetics of Association.—Incubations were effected at 310 K at pH 6.5 (0.2 mol dm⁻³ NH₄OAc) with a ligand concentration of 5 μ mol dm⁻³. Typically, a 1 mm³ aliquot (67 μ Ci) of high quality ⁹⁰Y (Amersham) was added to a solution containing : (a) 25 mm³ of a 50 μ mol dm⁻³ solution of the ligand; (b) 125 mm³ of an 0.4 mol dm⁻³ solution of NH₄OAc; (c) 99 μ mol dm⁻³

of MilliQ water. A 10 mm³ sample was removed at various time intervals up to 1 h, and was added to a solution containing DTPA in excess (5 mm³ of 500 μ mol dm⁻³) and 85 mm³ of 0.15 mol dm⁻³ NH₄OAc (pH 6.8). Under these conditions any dissociated ⁹⁰Y is immediately scavenged by the DTPA, and the remaining bound ⁹⁰Y has been shown in control experiments to be stable with respect to transcomplexation by DTPA, in the pH range 5–6.5, over a 24 h period, at least.

Samples were analysed by anion-exchange HPLC [Hichrom AX300 or Poros Q/M (Perceptive Biosystems): eluent 0.15 mol dm⁻³ NH₄OAc pH 6.8 run at 2 cm³ per min. The $[^{90}Y \cdot DTPA]^{2-}$ elutes under these conditions at *ca*. 3 min, and the monoanionic (or neutral) complexes elute at *ca*. 1 min, as detected (and counted) by a Beckman 170 radioisotope detector. Longer retention times may be achieved by increasing the % of acetonitrile added.

Ligand Synthesis

Tetraethyl 1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetrayltetramethylenetetra(benzylphosphinate) 1a.-1,4,7,10-Tetraazacyclododecane (1 g, 5.8×10^{-3} mol) was stirred in dry THF (50 cm³) under an argon atmosphere. To this was added paraformaldehyde (0.9 g, 29×10^{-3} mol) and benzyldiethoxyphosphine (6 g, 29×10^{-3} mol). The mixture was heated under reflux over molecular sieves for about 18 h to give a cloudy solution. The solution was filtered and the solvent was evaporated under vacuum. The product was purified using alumina column chromatography (gradient elution from dichloromethane to 2% ethanol-dichloromethane, $R_{\rm f}$ product = 0.7, 5% ethanol-dichloromethane) to yield a colourless oil $(2.5 \text{ g}, 45\%); \delta_{\text{H}}(\text{CDCl}_3) 1.15 (12 \text{ H}, \text{t}, \text{OCH}_2\text{CH}_2\text{CH}_3), 2.86$ (20 H, br, m NCH₂CH₂ and NCH₂), 3.16 (8 H, m, PCH₂Ar) and 7.25 (20 H, m, Ar); $\delta_{P}{^{1}H}(CDCl_{3})$ 48.9 (s); $\delta_{C}(CDCl_{3})$ 17.17 (d, ³J 5.5, CH₂CH₃), 36.4 (d, ¹J 81, PCH₂), 53.8 (d, ¹J 99, PCH₂N), 53.86, 53.99, 54.11 and 54.37 (s, NCH₂), 61.19 (d, ²J7, OCH₂CH₃) and 127.15, 127.2, 128.97 and 130.34 (d, ²J_{PC} 10, Ar); m/z (DCI) 956 (100%, M⁺).

1,4,7,10-*Tetraazacyclododecane*-1,4,7,10-*tetrayltetramethyl*enetetra(benzylphosphinic Acid) **1b**.—The tetrabenzyl tetraester **1a** (2.5 g, 2.6 mmol) was treated with 50 cm³ of hydrochloric acid (6 mol dm⁻³) and the solution was heated under reflux for 18 h to give a clear solution. After cooling, the product precipitated from the solution at pH 1.5–2.0 as the zwitterion, and was recrystallised from methanol to yield a colourless crystalline solid, m.p. > 200 °C (1.8 g, 80%); $\delta_{\rm H}(\rm D_2O)$ 2.9 (32 H, br m, NCH₂) and 7.15 (20 H, br m, Ar); $\delta_{\rm P}(\rm D_2O;$ pD = 1.831; *m/z* (DCI) 844 (100, M⁺) (Found: C, 52.1; H, 7.2; N, 6.0. C₄₀H₅₆N₄O₈P₄·4H₂O requires C, 52.4; H, 6.99; N, 6.11%).

Tetraethyl 1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetrayltetramethylenetetra(butylphosphinate) **2a**.—The title compound was prepared using a method similar to that of the benzyl analogue using 1,4,7,10-tetraazacyclododecane (0.34 g, 1.9 × 10⁻³ mol), butyldiethoxyphosphine (1.3 g, 9.7 × 10⁻³ mol) and paraformaldehyde (0.7 g, 9.7 × 10⁻³ mol). The product was purified using alumina column chromatography (gradient elution from dichloromethane to 5% ethanol–dichloromethane, $R_f = 0.7$, 10% ethanol–dichloromethane) to yield a colourless oil (0.7 g, 46%); $\delta_{\rm H}$ (CDCl₃) 0.97 (12 H, t, ³J 7.5, CH₂C), 1.24 (12 H, t, CH₂C), 1.35 (8 H, dt, CH₂C), 1.50 (8 H, m, CH₂C), 1.70 (8 H, br m, CH₂P), 2.6–2.95 (24 H, br m, CH₂N ring) and 4.01 (8 H, dq, CH₂O); $\delta_{\rm P}$ (CDCl₃) 53.8 (s); $\delta_{\rm C}$ (CDCl₃) 12.7 (CH₂CH₃), 15.8 (d, ²J 5, OCH₂CH₃), 22.85 (CH₂CH₃), 23.06 (d, $J_{\rm PC}$ 15, PCH₂CH₂), 26.46 (d, ¹ $J_{\rm PC}$ 87, PCH₂CH₂), 52.38 (d, ${}^{1}J_{PC}$ 104, NCH₂P), 53.2 (br, CH₂N ring) and 59.1 (d, ${}^{2}J$ 5, OCH₂CH₃); m/z (DCI) 820 (100, M⁺).

1,4,7,10-*Tetraazacyclododecane*-1,4,7,10-*tetrayltetramethyl*enetetra(butylphosphinic Acid) **2b**.—The ester **2a** (0.41 g, 0.5 mmol) was treated with hydrochloric acid (6 mol dm⁻³, 50 cm³) and the solution was heated at 100 °C for 18 h to give a clear solution. The solvent was evaporated under vacuum to give the dihydrochloride salt as a glassy colourless solid, m.p. > 200 °C which was characterised as the title compound; $\delta_{H}(CD_3OD)$ 0.97 (12 H, t, ³J 7.5, CH₂CH₃), 1.4–1.7 (16 H, m, CH₂C), 1.95 (8 H, dt, CH₂CH₂P) and 3.4–3.8 (24 H, br m, CH₂N); δ_{P} -(CD₃OD) 46.83 (s); $\delta_{C}(CD_3OD)$ 13.95 (s, CH₃), 24.13 (d, ³J 2.5), 24.87 (d, ²J 8), 29.6 (d, ¹J 96, CH₂P) and 52.4, 52.9 (s, CH₂N) (Found: C, 38.6; H, 8.8; N, 6.2. C₂₈H₆₆Cl₂N₄P₄O₈• 4H₂O requires: C, 39.0; H, 8.59; N, 6.50%).

Tetramethyl 1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetrayltetramethylenetetra(phenylphosphinate) **3a**.—The title compound was synthesised using a method similar to that used for the benzyl analogue using 1,4,7,10-tetraazacyclododecane (0.5 g, 2.9 × 10⁻³ mol) and phenyldimethoxyphosphine (2.5 g, 14.5 × 10⁻³ mol) and paraformaldehyde (0.45 g, 14.5 × 10⁻³ mol). The product was purified using alumina column chromatography (gradient elution from dichloromethane to 2% methanol–dichloromethane, $R_f = 0.63$, 10% methanol–dichloromethane) to yield a colourless solid (1.4 g, 57%); $\delta_{\rm H}(\rm CDCl_3)$ 2.42 (16 H, br m, CH₂C), 2.9 (8 H, br m, NCH₂P), 3.56 (12 H, d + d + d + d, POCH₂ isomers), 7.4 (12 H, m, Ar) and 7.75 (8 H, m, ortho Ar); $\delta_{\rm P}$ {¹H}(CDCl₃) 41.5 (s); *m*/*z* (DCl) 844 (100, M⁺).

1,4,7,10-*Tetraazacyclododecane*-1,4,7,10-*tetrayltetramethyl*enetetra(phenylphosphinic Acid) **3b**.—The title compound was isolated as a colourless glassy solid which could be recrystallised from water as the zwitterion, m.p. > 200 °C as described for the butyl analogue; $\delta_{H}(D_2O; pD = 10)$ 2.06 (16 H, m, CH₂N), 2.26 (8 H, br, CH₂N), 7.25 (12 H, m, Ar), 7.46 (8 H, m, ortho Ar); $\delta_{P}\{^{1}H\}(D_2O; pD = 14)$, 28.0; $\delta_{C}(D_2O; pD = 14)$ 49.6 (d, ¹J 98, NCH₂P), 56.0 (br, ring CH₂N) 128.3 (br, ArCH) and 130.9, 137.1 (d, ¹J 118, CP) (Found: C, 48.3; H, 6.75; N, 6.6. C₃₆H₄₈N₄P₄O₈·5H₂O requires: C, 48.6; H, 6.53; N, 6.31%).

Triethyl 1,4,7,10-Tetraazacyclododecane-1,4,7-triyltrimethylenetri(methylphosphinate) 4.---1,4,7,10-Tetraazacyclododecane (1 g, 5.8 \times 10⁻³ mol) was stirred in dry THF (50 cm³) under an argon atmosphere. To this was added paraformaldehyde (0.6 g, 19.2×10^{-3} mol) and methyldiethoxyphosphine (2.6 g, 19.2×10^{-3} mol). The mixture was heated under reflux over molecular sieves for about 18 h to give a cloudy solution. The solution was filtered and the solvent was evaporated under vacuum. The product was separated from the tetraester using alumina column chromatography (gradient elution from dichloromethane to 4% methanol-dichloromethane, R_f product = 0.28, 5% methanol-dichloromethane) to yield a colourless oil (0.74 g, 24%); $\delta_{\rm H}({\rm CDCl}_3)$ 1.4 (9 H, t, OCH₂CH₃), 1.53 (9 H, d, PCH₃), 2.8 (22 H, br, m, CH₂CH₂ and \tilde{NCH}_2), 4.1 (6 H, m, OCH_2); δ_P {¹H}(CDCl₃) 51.4, 51.5 and 51.6; m/z (DCI) 533 (100, $M^+ + 1$), 425 [89, $M^+ - P(O)(OC_2H_5)(CH_3)$] (Found: $M^+ + 1$, 533.2793. $C_{20}H_{47}N_4O_6P_3$ requires *M*, 532.2708).

2-Bromo-N-methylethanamide 5.—Methylamine hydrochloride (13.5 g, 0.2 mol) was added to a stirred solution of 1,2dichloroethane (150 cm³) and sodium hydroxide (16 g, in 25 cm³ of water). The mixture was cooled to -10 °C using an icesalt-ethanol bath. Bromoacetyl bromide (31.5 g, 0.2 mol) in 1,2dichloromethane (25 cm³) was added to the solution at a rate at which the temperature of the solution was kept below -10 °C. After the addition, themixture was warmed to room temperature, the organic layer was separated, dried with magnesium sulfate and the solvent was evaporated under vacuum to give a pale brown solid. The product was isolated as white crystals by sublimation (25 °C, 0.05 mmHg); $\delta_{\rm H}$ (CDCl₃), 2.87 (3 H, d, HNCH₃), 3.9(2 H, s, BrCH₂) and 6.6(1 H, br s, HN); *m/z* (CI) 152 (M⁺ + 1) and 151 (M⁺) (Found: C, 23.6; H, 4.0; N, 9.15. C₃H₆BrNO requires C, 23.7; H, 3.95; N, 9.21%).

Triethyl 10-(Methylcarbamoylmethyl)-1,4,7,10-tetraazacyclododecane-1.4.7-trivltrimethylenetri(methylphosphinate) 6a. The triester 4 (0.1 g, 1.8×10^{-4} mol) and potassium carbonate $(0.03 \text{ g}, 1.8 \times 10^{-4} \text{ mol})$ were stirred in anhydrous dimethylformamide (5 cm³) under an argon atmosphere. To this was added 2-bromo-N-methylethanamide (0.03 g, 1.8×10^{-4} mol) and the mixture was heated at 80 °C for about 16 h to give a cloudy solution. The solvent was evaporated and the residue mass was redissolved in dichloromethane and filtered to give a clear solution. The solvent was evaporated and the crude product was purified using alumina column chromatography to yield a colourless oil (68 mg, 63%) (gradient elution from dichloromethane to 2% methanol-dichloromethane, $R_{\rm f} = 0.6$, 10% methanol-dichloromethane); $\delta_{\rm H}(\rm CDCl_3)$ 1.31 (9 H, t, ³J 7.5, CH₂CH₃), 1.5 (9 H, d, ²J 12.5, PCH₃), 2.85 (27 H, br, m, CH₂CH₂, NCH₂ and NCH₃), 4.06 (6 H, dt POCH₂) and 8.2 (1 H, br s, NH); $\delta_{P}{^{1}H}(CDCl_{3})$ 52.1, 52.3 and 52.4; m/z(DCI) 604 (100, M^+ + 1) and 533 [12.5, M^+ - $CH_2C(O)$ -NHMe]. A satisfactory microanalysis could not be obtained for this product.

10-(*Methylcarbamoylmethyl*)-1,4,7,10-*tetraazacyclododec*ane-1,4,7-*triyltrimethylenetri*(*methylphosphinic Acid*) **6b**.—The monoamide triester **6a** (0.05 g, 5.9 × 10⁻⁴ mol) was treated with potassium deuteroxide in deuterium oxide and the ¹H NMR spectrum of the reaction mixture comprised resonances corresponding to ethanol and the hydrolysed product; $\delta_{\rm H}(\rm D_2O)$ 1.2 (9 H, d, PCH₃) and 2.66 (27 H, br, m, CH₂CH₂, NCH₂ and NCH₃); $\delta_{\rm P}$ {¹H}(D₂O) 39.3, 39.4, 39.5; *m/z* (FAB) 520 (100, M⁺ + 1) (Found: M⁺, 520.210. C₁₇H₃₅N₅O₇P₃ requires *M*, 519.215).

1-(Dimethylcarbamoylmethyl)-1,4,7,10-tetraazacyclododecane 7a.—1,4,7,10-Tetraazacyclododecane (0.32 g, 1.8×10^{-3} mol) and molybdenum hexacarbonyl (0.5 g, 1.8×10^{-3} mol) in dibutyl ether (20 cm³) were heated at reflux temperature, under argon for 2 h to give a bright yellow precipitate. The yellow precipitate was filtered under argon and dried under vacuum. The yellow 1,4,7,10-tetraazacyclododecane-molybdenum tricarbonyl complex (0.62 g, 1.7×10^{-3} mol) and fine mesh anhydrous potassium carbonate (excess) were taken into degassed dry dimethylformamide (10 cm³) and heated to 80 °C under an argon atmosphere. To this was added 2-bromo-N,Ndimethylethanamide (0.3 g, 1.7 \times 10⁻³ mol) and heating was continued for another 1.5 h. The solvent was distilled off under vacuum. The residue was taken up in hydrochloric acid solution (10%, v/v). The resulting acidic solution was oxidised in air for about 1.8 h. The pH of the solution was raised to 14 with potassium hydroxide pellets with cooling. Molybdenum residues were filtered off to give a clear solution. The product was extracted into chloroform $(4 \times 50 \text{ cm}^3)$ and the solvent was evaporated off to give a pale yellow oil (0.37 g, 78%); $\delta_{\rm H}$ (CDCl₃) 2.57 (6 H, br m, NCH₂), 2.66 (2 H, s, NCH₂), 2.77 (8 H, br m, NCH₂), 2.90 (3 H, s, NCH₃), 3.00 (3 H, s, NCH₃) and 3.41 (2 H, s, NCH₂CO); δ_c(CDCl₃) 35.1, 36.5 (s, NCH₃) 45.1, 45.7, 45.88, 46.86, 51.8 (s, NCH₂ ring) and 56.9 (s, NCH₂C=O), 170.3 (s, C=O); m/z (DCI) 257 (100, M⁺) (Found: M⁺, 257.2209. $C_{12}H_{27}N_5O$ requires M, 257.2216).

Triethyl 10-(Dimethylcarbamoylmethyl)-1,4,7,10-tetraazacyclododecane-1,4,7-trivltrimethylenetri(methylphosphinate) 7b.-Methyldiethoxyphosphine (1.14 g, 8.34×10^{-3} mol) followed immediately by paraformaldehyde (0.62 g, 8.34×10^{-3} mol) were added to anhydrous tetrahydrofuran (50 cm³) containing the monosubstituted cycle 7a (0.65 g, 2.5×10^{-3} mol) at 100 °C under an argon atmosphere. The solution was heated at reflux temperature for 18 h over 4Å molecular sieves. Excess paraformaldehyde was filtered off and the solvent was removed under vacuum to yield a pale yellow oil. The product (0.8 g, 51%) was isolated following alumina column chromatography as a mixture of stereoisomers (gradient elution from dichloromethane to 3% ethanol-dichloromethane, $R_{\rm f} = 0.55$, 10% ethanol-dichloromethane); $\delta_{\rm H}$ (CDCl₃) 1.25 (9 H, t, ³J 4, OCH₂CH₃), 1.47 (9 H, d, ²J 8, PCH₃), 2.15 (3 H, s, NCH₃), 2.21 (3 H, s, NCH₃), 2.5-3.1 (24 H, br m, NCH₂ ring, NCH₂P, NCH₂CO), 4.0 (6 H, dt, OCH₂CH₃); δ_{P} {¹H}(CDCl₃) 52.5, 52.8 and 53.2; $\delta_{\rm C}({\rm CDCl}_3)$ 13.0 (d, ¹J 90, PCH₃), 16.3 (d, ³J 5.8, OCH_2CH_3), 34.9, 36.3 (s + s, NCH₃), 51.9 (d, J_{PC} 104, NCH₂P), 53.5, 53.7, 53.9, 54.6, 54.7 (CH₂N, ring), 57.1 (s, CH₂NCO), 59.8 (d, ³J 5.6, OCH₂CH₃) and 171.3 (CO); m/z (DCI) 618 (M^+ + 1, 100) (Found: M^+ + 1, 617.3249. $C_{24}H_{54}N_5O_7P_3$ requires M + 1, 617.3236).

10-(Dimethylcarbamoylmethyl)-1,4,7,10-tetraazacyclododecane-1,4,7-triyltrimethylenetri(methylphosphinic Acid) 7c.— Compound 7b (0.6 g, 9.7 × 10⁻⁴ mol) was taken into a solution of potassium deuteroxide in deuterium oxide. The solution was stirred for 16 h at room temperature. The ¹H NMR spectrum of the solution was comprised of resonances corresponding to ethanol and the title product. The solution was neutralised using hydrochloric acid and the solvent was evaporated to dryness to give a quantitative yield of the title product; δ_H(D₂O; pD = 5) 0.99 (6 H, d, ²J 12.5, PCH₃), 1.02 (3 H, d, ²J 12.5, PCH₃), 2.1–2.7 (24 H, br m, NCH₂ ring, NCH₂CO, NCH₂P), 2.67 (3 H, s, NCH₃) and 2.78 (3 H, s, NCH₃); δ_P(D₂O) 38.58, 38.76 and 39.06; *m/z* (FAB) 534 (100, M⁺).

1-(*Dibutylcarbamoylmethyl*)-1,4,7,10-*tetraazacyclododecane* **8a**.—Compound **8a** was synthesised using a method similar to that of compound **7a** using 1,4,7,10-tetraazacyclododecane (1 g, 5.8×10^{-3} mol) and molybdenum hexacarbonyl (1.53 g, 5.8×10^{-3} mol) in dibutyl ether (100 cm³). The yellow molybdenum tricarbonyl complex and potassium carbonate (0.85 g, excess) were taken up in degassed anhydrous DMF (60 cm³) and 2-bromo-*N*,*N*-dibutylethanamide (1.45 g, 5.8×10^{-3} mol) was added. The product was isolated as a colourless oil (1.3 g, 86%); $\delta_{\rm H}$ (CDCl₃) 0.7 (6 H, m, CH₂CH₃), 1.05 (4 H, m, CH₂CH₂), 1.30 (4 H, m, CH₂CH₂), 2.55 (16 H, m, NCH₂ ring), 3.0 [4 H, m, N(CH₂)₂] and 3.25 (2 H, NCH₂CO); *m/z* (DCI) 342 (100, M⁺ + 1) (Found: M⁺ + 1, 342.3149. C₁₈H₃₉N₅O requires *M*, 341.3155).

Triethyl 10-(Dibutylcarbamoylmethyl)-1,4,7,10-tetraaza-

cyclododecane-1,4,7-triyltrimethylenetri(methylphosphinate) **8b**. —The title compound was synthesised using a method similar to that for **7b**, using **8a** (1.2 g, 3.5×10^{-3} mol) and paraformaldehyde (0.42 g, 12.3×10^{-3} mol) in anhydrous tetrahydrofuran (30 cm³) which were heated to 100 °C and diethoxy(methyl)phosphine (1.68 g, 12.3×10^{-3} mol) was added. The product was purified using alumina column chromatography (gradient elution from dichloromethane to 5% ethanol-dichloromethane, $R_f = 0.4$, 10% ethanol-dichloromethane) and was isolated as a pale oil (1.1 g, 45%); $\delta_{\rm H}(\rm CDCl_3) 0.95$ (6 H, m, CH₂CH₃), 1.21 (8 H, m, CH₂CH₂), 1.31 (9 H, t, ³J 7.5, OCH₂CH₃), 1.54 (9 H, d, ²J 15, PCH₃), 2.5-3.5 (24 H, br m, NCH₂ ring, NCH₂P, NCH₂CO), 3.66 [4 H, m, N(CH₂)₂] and 4.06 (6 H, dq + dq, OCH₂CH₃); $\delta_{\rm P}$ ⁽¹H}- $(CDCl_3)$ 51.86, 51.73 and 51.62; m/z (Found: M⁺ + 1, 702.4189. C₃₀H₆₆N₅O₇P₃ requires *M*, 701.4175).

10-(Dibutylcarbamoylmethyl)-1,4,7,10-tetraazacyclododecane-1,4,7-triyltrimethylenetri(methylphosphinic Acid) 8c.—The title compound was prepared using a method similar to that for compound 7c; $\delta_{\rm H}({\rm D_2O}; {\rm pD}=5)$ 0.92 (6 H, t, ³J 7.5, CH₂CH₃), 1.1–1.8(17 H, br m, CH₂CH₂, PMe), 2.5–2.7(4 H, br, NCH₂) and 3.51 (24 H, br, NCH₂ ring, NCH₂CO, NCH₂P); $\delta_{\rm P}{}^{\rm 1}{\rm H}{\rm (D_2O)}$ 37.2, 37.5 and 37.9; m/z (FAB, glycerol) 619 (100, M⁺ + 2).

l-(*Dibenzylcarbamoylmethyl*)-1,4,7,10-*tetraazacyclododecane* **9a**.—The title compound was synthesised using a method similar to that for compound **7a** using 1,4,7,10-tetraazacyclododecane (0.8 g, 4.7×10^{-3} mmol), molybdenum hexacarbonyl (1.26 g, 4.76×10^{-3} mmol), potassium carbonate (excess) and *N*,*N*-dibenzyl-2-bromoethanamide (1.0 g, 4.6×10^{-3} mmol) and was isolated as a pale yellow oil (1.5 g, 78%); $\delta_{\rm H}(\rm CDCl_3)$ 2.5–2.8 (16 H, br m, NCH₂ ring), 3.75 (2 H, s, NCH₂CO), 4.41, 4.60 [2 H + 2 H, s + s, N(CH₂)₂], 7.3 (10 H, br m, Ar); *m/z* (DCI) 410 (100, M⁺ + 1) (Found: M⁺ + 1, 410.2846. C₂₄H₃₅N₅O requires *M*, 409.2842).

Triethyl 10-(Dibenzylcarbamoylmethyl)-1,4,7,10-tetraazacyclododecane-1,4,7-triyltrimethylenetri(methylphosphinate) **9b**.— The title compound was synthesised using a similar method to that of the compound **7b** using the amine **9a** (1.0 g, 2.4×10^{-3} mmol) paraformaldehyde (0.3 g $\times 10^{-3}$ mmol) and methyldiethoxyphosphine (1.24 g, 9.0 $\times 10^{-3}$ mmol). The product was purified using alumina column chromatography (gradient elution from dichloromethane to 5% ethanol–dichloromethane, $R_f = 0.6, 10\%$ ethanol–dichloromethane) and was isolated as a colourless oil (1 g, 55%); $\delta_{H}(CDCl_3)$ 1.29 (9 H, t, ³J 7.5, OCH₂CH₃), 1.56 (9 H, d, ²J 17, PCH₃), 2.5–3.2 (22 H, br m, NCH₂ ring, NCH₂P), 3.66 (2 H, s, NCH₂CO), 4.02 (6 H, dq, POCH₂CH₃) and 4.70, 4.80 [4 H, s, N(CH₂)₂]; δ_{F} {¹H}-(CDCl₃) 51.7, 51.8 and 52.0; m/z (DCI) 769 (100, M⁺). A satisfactory microanalysis was not obtained for this product.

10-(Dibenzylcarbamoylmethyl)-1,4,7,10-tetraazacyclododecane-1,4,7-triyltrimethylenetri(methylphosphinic Acid) 9c.—The title compound was prepared using a method similar to that for compound 7c; $\delta_{\rm H}(\rm D_2O; pD = 5)$ 1.07 (9 H, t, ²J 14.5, PCH₃), 1.9–2.8 (24 H, br, NCH₂ ring, NCH₂CO + NCH₂P), 4.1–4.4 [4 H, br, N(CH₂)₂] and 7.0 (10 H, br, Ar]; $\delta_{\rm P}$ {¹H}(D₂O) 36.4, 36.5 and 36.6; *m/z* (FAB) 686 (100, M⁺ + 1).

1-(*Methylcarbamoylmethyl*)-1,4,7,10-*tetraazacyclododecane* **10a**.—The title compound was synthesised using a method similar to that for **7a** using 1,4,7,10-tetraazacyclododecane (1 g, 5.8×10^{-3} mol), molybdenum hexacarbonyl (1.54, 5.8×10^{-3} mol), potassium carbonate (excess) and 2-bromo-*N*-methylethanamide (0.88 g, 5.8×10^{-3} mol) to give a colourless oil (1.1 g, 84%); $\delta_{\rm H}(\rm CDCl_3)$ 2.58 (16 H, br m, NCH₂ ring), 2.73 (3 H, d, ³J 5, NCH₃), 3.08 (2 H, s, NCH₂CO) and 7.70 (1 H, br s, NH); $\delta_{\rm C}(\rm CDCl_3)$ 35.5 (NCH₃), 45.2, 45.8, 46.0, 47.0 and 52.1 (NCH₂ ring), 57.8 (CH₂CO) and 171.2 (C=O); *m/z* (DCl) 244 (100, M⁺ + 1) (Found: M⁺ + 1, 244.2063. C₁₁H₂₅N₅O requires *M*, 243.2059).

Triethyl 10-(Methylcarbamoylmethyl)-1,4,7,10-tetraazacy-

clododecane-1,4,7-triyltrimethylenetri(butylphosphinate) 10b.— The title compound was prepared using a method similar to that for compound 7b using the amine 10a (0.4 g, 1.6×10^{-3} mol), paraformaldehyde (0.15 g, 1.6×10^{-3} mol) and butyldiethoxyphosphine (0.87 g, 4.9×10^{-3} mol). The product (isolated as a mixture of diastereoisomers) was purified using alumina column chromatography (gradient elution from dichloromethane to 2% ethanol-dichloromethane, $R_f = 0.2$, 10% ethanol-dichloromethane) to yield a colourless oil (0.83 g, 68%); $\delta_{H}(CDCl_3) 0.89$ (9 H, t, ${}^{3}J$ 7.2, CH₂CH₃), 1.26 (9 H, t, ${}^{3}J$ 7, OCH₂CH₃), 1.3–1.8 (18 H, m, PCH₂CH₂CH₂), 2.5–3.6 (27 H, br m, NCH₂ ring, NCH₂P, NCH₂CO, NCH₃), 4.1 (6 H, dq, OCH₂CH₃) and 8.3 (1 H, br s, NH); $\delta_{P}({}^{1}H)(CDCl_{3})$ 53.2, 53.3 and 53.8; $\delta_{C}(CDCl_{3})$ 13.4 (CCH₂CH₃), 16.51 (OCH₂CH₃), 23.55, 23.58, 23.67, 23.82 and 25.81 (CH₂C), 27.5, 27.8 (d + d, ${}^{1}J86$, CH₂P), 52.8 (d, ${}^{1}J100$, CH₂N), 53.59, 53.69, 53.78, 53.96, 54.05, 54.78, 54.85, 54.89, 55.47 (ring CH₂N, NMe), 59.84 (d, {}^{2}J6, CH₂O) and 171.89 (s, C=O); *m/z* (DCI) 729 (100, M⁺).

10-(Methylcarbamoylmethyl)-1,4,7,10-tetraazacyclododecane-1,4,7-triyltrimethylenetri(butylphosphinic Acid) **10c**.—The

title compound was prepared using a method similar to that for compound 7c; $\delta_{\rm H}(D_2O; pD = 5) 0.92 (9 \text{ H}, t, {}^3J 7.5, CH_2CH_3), 1.3-1.45 (6 \text{ H}, br, PCH_2), 1.45-1.65 (12 \text{ H}, br, CH_2CH_3) and 2.2-2.9 (27 \text{ H}, br, NCH_2 ring, NCH_2CO, NCH_2P, NCH_3); <math>\delta_{\rm P}\{{}^{1}{\rm H}\}(D_2O)$ 45.8, 45.9 and 46.0; m/z (FAB) 645 (100, M⁺ + 1).

Trimethyl 1-(Dimethylcarbamoylmethyl)-1,4,7,10-tetraazacyclododecane-1,4,7-triyltrimethylenetri(phenylphosphinate)

11b.—The title compound was prepared using a method similar to that of compound 7b using the amine 7a (0.3 g, 1.16×10^{-3} mol), phenyldimethoxyphosphine (0.65 g, 3.5×10^{-3} mol) and paraformaldehyde (0.15 g, 3.5×10^{-3} mol). The product was purified using alumina column chromatography (gradient elution from dichloromethane to 2% methanol–dichloromethane) and yielded a colourless oil (0.6 g, 69%); $\delta_{\rm H}(\rm CDCl_3)$ 1.9–2.9 (24 H, br m, NCH₂ ring, NCH₂P, NCH₂CO), 2.8, 2.9 (6 H, s + s, NCH₃), 3.6 (6 H, dt, OCH₂CH₃), 7.5 (9 H, br m, Ar) and 7.8 (6 H, br m, ortho Ar); $\delta_{\rm P}{}^{1}{\rm H}{\rm (CDCl_3)}$ 46.3; m/z (DCI) 762 (100, M⁺ + 1) (Found: M⁺ + 1, 762.3231. C₃₆H₅₄N₅O₇P₃ requires *M*, 761.3236).

10-(Dimethylcarbamoylmethyl)-1,4,7,10-tetraazacyclododecane-1,4,7-triyltrimethylenetri(phenylphosphinic Acid) 11c.—The title compound vas prepared using a method similar to that for compound 7c; $\delta_{\rm H}(D_2O; pD = 5) 2.1-2.8 (22 \text{ H, br, NCH}_2$ $ring, NCH_2P), 2.83 (2 \text{ H, br, NCH}_2CO), 2.92 (3 \text{ H, s, NCH}_3),$ $2.99 (3 \text{ H, s, NCH}_3), 7.54 (9 \text{ H, br, Ar}), 7.75 (6 \text{ H, br, ortho Ar});$ $<math>\delta_{\rm P}\{^{1}{\rm H}\}(D_2O)$ 29.1, 29.6 (5, in ratio 1:2); $\delta_{\rm C}(D_2O)$ 35.7, 36.6 [s + s, N(CH_3)_2], 48.8, 51.33, 54.25 (br, NCH_2 ring, NCH_2P, NCH_2CO), 128.3, 128.4, 130.7, 130.9, 131.3 and 138.5 (br, Ar) and 172.88 (CO); m/z (FAB) 720 (M⁺ + 1), 678.

1-Benzyl-1,4,7,10-tetraazacyclododecane 12a.—This compound was prepared using a method similar to that of compound 7a using 1,4,7,10-tetraazacyclododecane (1 g, 5.8×10^{-3} mol), molybdenum hexacarbonyl (1.54 g, 5.8×10^{-3} mol), dibutyl ether (70 cm³), benzyl chloride (0.74 g, 5.8×10^{-3} mol) and potassium carbonate (excess) to give a colourless solid, m.p. 78–79 °C (1.3 g, 86%); $\delta_{\rm H}$ (CDCl₃) 2.1–2.5 (16 H, br m, NCH₂ ring), 3.25 (2 H, s, NCH₂P) and 6.95 (5 H, br m, Ar); $\delta_{\rm C}$ (CDCl₃) 45.3, 46.6, 47.4 and 51.5 (CH₂N ring) and 59.44 (NCH₂Ph), 127.2, 128.5, 129.1 and 139.1 (Ar); *m/z* (DCI) 263 (100, M⁺ + 1) (Found: M⁺ + 1, 263.2194. C₁₅H₂₆N₄ requires *M*, 262.2188).

Triethyl 10-Benzyl-1,4,7,10-tetraazacyclododecane-1,4,7-triyltrimethylenetri(methylphosphinate) 12b.—The ester 12b was prepared using a method similar to that of compound 7b, using the amine 12a (1 g, 3.8×10^{-3} mol), diethoxy(methyl)phosphine (1.71 g, 12.5×10^{-3} mol) and paraformaldehyde (0.5 g, 12.5×10^{-3} mol). The product was purified using alumina column chromatography (gradient elution from dichloromethane to 2% ethanol-dichloromethane, $R_f = 0.4$, 10% ethanol-dichloromethane) to yield a colourless oil (1.5 g, 65%); $\delta_{\rm H}({\rm CDCl}_3)$ 1.19 (9 H, t, ³J 6, OCH₂CH₃), 1.35 (9 H, d, ²J 16, PCH₃), 2.4-3.0 (22 H, br m, NCH₂ ring, NCH₂P), 3.45 (2 H, s, NCH₂Ar), 3.92 (6 H, dt, OCH₂CH₃) and 7.2 (5 H, br m, Ar); $\delta_{\rm P}\{^{1}{\rm H}\}({\rm CDCl}_{3})$ 52.9 and 53.1; $\delta_{\rm C}({\rm CDCl}_{3})$ 14.0 (d, ¹J 90, PCH₃), 17.12 (d, ³J 6, OCH₂CH₃) 14.0 (d, ¹J 90, PCH₃), 17.12 (d, ³J 6, OCH₂CH₃), 53.1, 53.8, 54.7, 54.8, 55.2, 56.4 and 56.5 (NCH₂ ring, NCH₂P), 60.5 (d, ³J 5.5, NCH₂Ar), 127.3, 128.5, 129.8 and 139.4 (ArC) (Found: M⁺ + 1, 623.3179. C₂₇H₅₃-N₄O₆P₃ requires: *M*, 622.3178).

10-Benzyl 1,4,7,10-Tetraazacyclododecane-1,4,7-triyltrimethylenetri(methylphosphinic Acid) 12c.—The title compound was prepared using a method similar to that for compound 7c; $\delta_{\rm H}(D_2O; pD = 5)$ 1.3 (6 H, d, ²J 14, PCH₃), 1.34 (3 H, d, ²J 14, PCH₃), 2.8–383 (16 H, br, NCH₂ ring), 3.52 (6 H, br, NCH₂P), 4.45 (2 H, s, NCH₂Ph) and 7.38 (5 H, br, Ar); $\delta_{\rm P}\{^{1}{\rm H}\}(D_2O)$ 37.9 and 50.7 (1:2); m/z (FAB) 540 (100, M⁺ + 2) and 539 (M⁺ + 1).

1-[2-(Trimethylammonio)ethylcarbamoylmethyl]-1,4,7,10tetraazacyclododecane hydroxide 13a.-The amine 13a was prepared using a method similar to that for compound 7a using 1,4,7,10-tetraazacyclododecane (0.4 g, 2.32×10^{-3} mol), molybdenum hexacarbonyl (0.61 g, 2.32×10^{-3} mol), and the ammonium salt 14 (0.86 g, 2.32×10^{-3} mol). The oxidised acidic solution was treated with potassium hydroxide to adjust the pH to 14. The aqueous layer was washed with chloroform $(2 \times 30 \text{ cm}^3)$ to remove the residual free amine. The molybdenum residues were filtered off from the aqueous solution and the solvent was removed to give a white residue. The residual solid was taken up in methanol $(2 \times 50 \text{ cm}^3)$ and insoluble potassium chloride was filtered off. This process was repeated until no more potassium salts were deposited. The solvent was evaporated off to give a colourless solid (0.6 g, 78%); $\delta_{\rm H}$ -(CD₃OD) 2.6-3.0 (16 H, br m, NCH₂ ring), 3.40 [11 H, br s, N(CH₃)₃, NCH₂CO] and 3.83 (2 H, t, ${}^{3}J$ 7.5, CH₂CH₃); m/z(FAB) 315 (M⁺) and 314 (100, M⁺ - 1). A satisfactory microanalysis was not obtained for this product.

10-[2-(Trimethylammonio)ethylcarbamoylmethyl]-1,4,7,10tetraazacyclododecane-1,4,7-triyltriacetate Chloride 13b.--The compound 13a (as the hydroxide) was converted into chloride by stirring for 1 h with Amberlite IRC(I) anion exchange resin (Cl^{-}) in a 1:1 (v/v) methanol-water solution. The resin was filtered off and the solvent was removed to give a white solid. The chloride salt (0.2 g, 5.7×10^{-4} mol), ethyl bromoacetate $(0.3 \text{ g}, 1.83 \times 10^{-3} \text{ mol})$ and potassium carbonate (0.22 g, 1.83×10^{-3} mol) were heated at reflux temperature for 18 h. The remaining white solid was filtered off. The solvent was removed and the product was purified using alumina column chromatography (gradient elution from 10% to 50% ethanoldichloromethane, $R_f = 0.8$, 70% ethanol-dichloromethane) to yield a glassy solid (0.2 g, 58%); $\delta_{\rm H}(\rm D_2O)$ 1.50 (9 H, t, ³J 7.5, OCH₂CH₃), 1.5-3.3 (24 H, br m, NCH₂ ring, NCH₂CO), 3.19 [9 H, s, N(CH₃)₃], 3.50 (6 H, q, ³J 7.5, OCH₂CH₃), 3.80 (2 H, br, COCH₂) and 4.40 (2 H, br, CH₂CH₂); m/z (FAB) 573 $(100, M^+).$

10-[2-(*Trimethylammonio*)ethylcarbamoylmethyl]-1,4,7,10tetraazacyclododecane-1,4,7-tri(acetic Acid) Chloride **13c**.—The title compound was prepared using a method similar to that for compound 7c; $\delta_{\rm H}(D_2O; pD = 5)$ 2.2–2.7 (16 H, br, NCH₂ ring), 2.8–3.0 (8 H, br, NCH₂CO), 3.08 [9 H, s, N(CH₃)₃] and 3.3–3.5 (4 H, br, CH₂CH₂); $\delta_{\rm C}(D_2O)$ 34.88, 34.95 and 35.0 (NMe₃), 46.5–47.5 (br s, CH₂ ring, NCH₂CO₂, NCH₂CON), 53.9, 54.5 (s + s, NCH₂CH₂) and 176.5 (CO); *m*/*z* (FAB) 489.30 (100, M⁺).

2-Bromo-N-(2-trimethylammonioethyl)ethanamide Hexafluorophosphate 14 .-- A mixture of (2-aminoethyl)trimethylammonium chloride (1 g, 5.7×10^{-3} mol) and sodium hydroxide (0.46 g, 1.5×10^{-3} mol) in 1,2-dichloroethane (100 cm³) was cooled to -10 °C using an ice-salt-ethanol bath. Bromoacetyl bromide (1.14 g, 5.7×10^{-3} mmol) was added to the stirred reaction mixture (portion-wise) while maintaining the temperature below 0 °C. The reaction mixture was warmed to room temperature and the stirring was continued for another hour. The organic layer was separated, and the aqueous layer was neutralised and washed with 1,2-dichloroethane (2×15 cm³). Ammonium hexafluorophosphate (excess) was added to the aqueous solution to give a white precipitate. The solid was separated, washed with water (twice) and dried to yield a colourless solid, m.p. >240 °C (1.2 g, 53%); $\delta_{\rm H}[^{2}{\rm H}_{6}]$ acetone) 3.41 [9 H, s, N(CH₃)₃], 3.70 [2 H, CH₂N(CH₃)₃], 3.87 (2 H, dt, NCH₂), 3.94 (2 H, s, BrCH₂C) and 7.99 (1 H, br s, NH); $\delta_{\rm C}[{}^{2}{\rm H}_{6}]$ acetone) 34.95 (s, NCH₂), 35.06 (s, BrCH₂), 53.97, 54.05 and 54.1 [s, N(CH₃)₃] and 65.41 [br s, CH₂N(CH₃)₃]; m/z (FAB) 224 (100, M⁺ + 1) (Found: C, 22.8; H, 4.3; N, 7.5. $C_7H_{16}N_2BrF_6OP$ requires: C, 22.7; H, 4.33; N, 7.59%).

2-Bromo-N,N-diisobutylethanamide 15.-To a solution of diisobutylamine hydrochloride (33.14 g, 0.20 mol) and sodium hydroxide (16 g, 0.4 mol in 20 cm³ of water) in 1,2-dichloroethane (150 cm³) was added a solution of bromoacetylbromide (40.4 g, 0.2 mol) in $C_2H_4Cl_2$ (25 cm³) dropwise maintaining a temperature of approximately -10 °C by way of an ice-salt-ethanol bath. The solution was stirred at -10 °C for a further 1 h, allowed to warm to room temperature and stirred overnight. The organic phase was washed with NaOH $(0.1 \text{ mol } dm^{-3}, 2 \times 25 \text{ cm}^3)$, HCl $(0.1 \text{ mol } dm^{-3}, 2 \times 25 \text{ cm}^3)$, and water $(3 \times 25 \text{ cm}^3)$, dried (MgSO₄), and the solvent evaporated off to yield a colourless viscous oil (36.03 g, 72%); v_{max}/cm^{-1} 1655 [NC(O)]; $\delta_{H}(CDCl_{3})$ 1.02 (6 H, d, J 6.6, CH₃), 1.08 (6 H, d, J 6.4, CH₃), 1.15 (2 H, m, J 7.0, CH), 2.32 (4 H, d, J 7.6, NCH₂) and 3.07 (2 H, s, BrCH₂); m/z (CI) 250 (M⁺) (Found: C, 47.7; H, 8.2; N, 5.45. C₁₀H₂₀BrNO requires: C, 48.0; H, 8.00; N, 5.60%).

N-(4-Aminobutyl)-4-methoxybenzenesulfonamide16.--4-Methoxybenzenesulfonyl chloride (7.62 g, 36.9 mmol) was added to a stirred solution of butane-1,4-diamine (22.46 g, 254.8 mmol) in dichloromethane (400 cm³) over a period of 45 min. The solution was stirred under nitrogen overnight, filtered, the solvent removed under reduced pressure, and saturated aqueous potassium hydroxide added to raise the pH to ≥ 13 . The aqueous phase was extracted exhaustively with chloroform, the organic fractions combined, dried (MgSO₄) and the solvent removed under reduced pressure to yield a thick pale yellow oil (8.38 g, 88%) of the title compound; $\delta_{\rm H}$ (DMSO) 1.37 (2 H, p, J 6.8, CH₂CH₂NH₂), 1.39 (2 H, p, J 6.5, CH₂CH₂NHSO₂), 2.48 (2 H, t, J 6.5, CH₂NH₂), 2.72 (2 H, t, J 6.6, CH₂NHSO₂), 3.4-4.0 (3 H, br s, NH₂, NH), 3.84 (3 H, s, CH₃O), 7.12 (2 H, d, J 8.8, CHCSO₂) and 7.77 (2 H, d, J 9.1, CHCOCH₃); $\delta_{\rm C}$ (DMSO) 26.9 (1 C, CH₂CH₂NH₂), 30.7 (1 C, CH₂CH₂NHSO₂), 41.5 (1 C, CH₂NH₂), 42.8 (1 C, CH₂NHSO₂), 55.8 (1 C, CH₃O), 114.5 (2 C, CHCSO₂), 128.9 (2 C, CHCOCH₃), 132.6 (1 C, CSO₂) and 162.3 (1 C, COCH₃) (Found: M⁺, 258.1031. C₁₁H₁₈N₂O₃S requires M, 258.1038).

N-(4-Bromoacetamidobutyl)-4-methoxybenzenesulfonamide 17.—To a solution of the monohydrochloride salt of 16 (8.38 g, 28.43 mmol) and sodium hydroxide (2.28 g, 57.00 mmol, in 6 cm^3 of water) in 1,2-dichloroethane (300 cm³) was added

bromoacetyl bromide (5.71 g, 28.28 mmol) in C₂H₄Cl₂ (100 cm³) dropwise, maintaining a temperature of approximately -10 °C. The solution was stirred at -10 °C for a further 1 h. allowed to warm to room temperature, and stirred overnight. The organic phase was washed with NaOH (0.1 mol dm⁻³, 2×25 cm³), HCl (0.1 mol dm⁻³, 2×25 cm³), and water $(3 \times 25 \text{ cm}^3)$ and dried (MgSO₄) and the solvent was evaporated off, to yield, on standing, a crude yellow solid (approx. 75%). The solid was shaken vigorously in hot toluene (100 cm³), the cloudy solvent decanted off, cooled (0 °C), and any precipitated solids filtered off. These were washed with a small quantity of cold toluene, and dried in vacuo. The process was repeated until the solution no longer became cloudy on shaking with the crude solid residue. A colourless solid resulted, m.p. 76-77 °C (3.90 g, 36%) (Found: $M^+ + 1$, 379.0251. $C_{13}H_{19}BrN_2O_4S$ requires *M*, 378.0249; v_{max}/cm^{-1} 1650 (CO) (Found: N, 7.4; C, 41.35; H, 5.05. C₁₃H₁₉BrN₂O₄S requires: N, 7.39; C, 41.16; H, 5.05%); δ_H(CDCl₃) 1.48 (4 H, m, CH₂CH₂-CH₂NH), 2.84 [2 H, m, CH₂NHC(O)], 3.17 (2 H, m, CH₂NHSO₂), 3.69 (2 H, s, CH₂Br), 3.80 (3 H, s, OCH₃), 5.77 [1 H, t, C(O)NH], 6.92 (2 H, d, J 8.3, CHCSO₂), 7.07 (1 H, t, SO_2NH) and 7.74 (2 H, d, J 8.3, CHCOCH₃); $\delta_C(CDCl_3)$ 26.0 [1 C, CH₂CH₂NHC(O)], 26.2 (1 C, CH₂CH₂NHSO₂), 28.8 (1 C, CH₂Br), 39.2 [1 C, CH₂NHC(O)], 42.4 (1 C, CH₂-NHSO₂), 55.3 (1 C, OCH₃), 113.9 (2 C, CHCSO₂), 128.7 (2 C, CHCO), 130.9 (1 C, CSO₂), 162.4 (1 C, COCH₃) and 166.2 [1 C, C(O)].

Molybdenum Tricarbonyl-1,4,7,10-tetraazacyclododecane Complex 18.—1,4,7,10-tetraazacyclododecane (1.64 g, 6.21 mmol), and molybdenum hexacarbonyl (1.64 g, 6.21 mmol) were refluxed in dibutyl ether under argon at 160 °C for 2 h, the bright yellow solids were filtered off under argon, and dried *in vacuo*, to give the title compound (2.08 g, 95%). This was used directly in the following reaction.

[4-(4-Methoxyphenylsulfonamido)butylcarbamoylmethyl]-

1,4,7,10-tetraazacyclododecane 19.---To the molybdenum tricarbonyl-12-N-4 complex, 18 (3.55 g, 10.09 mmol) in degassed DMF (50 cm³) under argon was added 17 (3.83 g, 10.09 mmol), and a slight excess of mesh potassium carbonate (1.79 g, 12.98 mmol) and the solution was heated for 1-2 h at 80 °C. The solvent was removed under reduced pressure (10^{-2} mmHg) , and the black residue taken up in 10% v/v HCl and left open to the air overnight. The pH was adjusted to 14 (KOH pellets) and the suspension filtered (to remove decomplexed molybdenum species), to give a yellow aqueous solution which was exhaustively extracted with dichloromethane. The organic fractions were combined and dried (K₂CO₃), and the solvent removed to give a pale yellow oil (4.13 g, 87%) (Found: $M^+ + 1$, 471.2681. $C_{21}H_{38}N_6O_4S$ requires: *M*, 470.2675); $\delta_{\rm H}({\rm CDCl}_3)$ 1.42 (4 H, m, ${\rm CH}_2{\rm CH}_2{\rm NHSO}_2$), 2.10–3.03 [23 H, m, CH₂N ring, CH₂NHC(O), NH ring, NCH₂C(O)], 3.12 (2 H, m, CH₂NHSO₂), 3.71 (3 H, s, OCH₃), 6.82 (2 H, d, J 8.8, CHCSO₂), 7.60 (2 H, d, J 8.8, CHCOCH₃) and 7.92 (1 H, t, SO₂NH); δ_C(CDCl₃) 26.0 (2 C, CH₂CH₂CH₂NH), 37.8 [1 C, CH₂NHC(O)], 42.0 (1 C, CH₂NHSO₂), 44.4 [2 C, CH₂CH₂-NCH₂C(O)], 46.0 [4 C, CH₂CH₂NHCH₂CH₂NCH₂C(O)], 52.5 [2 C, CH₂NCH₂C(O)], 55.1 (1 C, OCH₃), 58.2 [1 C, NCH₂C(O)], 113.5 (2 C, CHCSO₂), 128.3 (2 C, CHCOCH₃), 131.8 (1 C, CSO₂), 161.9 (1 C, COCH₃) and 171.2 [1 C, C(O)].

1-(*Diisobutylcarbamoylmethyl*)-1,4,7,10-*tetraazacyclododecane* **20**.—Synthesis as for **19** using molybdenum tricarbonyl–12-N-4 complex (1.75 g, 4.97 mmol), 2-bromo-*N*,*N*-diisobutylethanamide (1.24 g, 4.97 mmol), and potassium carbonate (0.96 g, 6.94 mmol) to yield a colourless oil (1.43 g, 84%) (Found: $M^+ + 1$, 342.3170. C₁₈H₃₉N₅O requires *M*, 341.3155); δ_H- $(CDCl_3) 0.73 (6 H, d, J7.2, CH_3), 0.77 (6 H, d, J7.0, CH_3), 1.82 (2 H, m, CH), 2.40–3.10 (23 H, m, NCH_2 ring, NH, NCH_2CH) and 3.40 [2 H, s, NCH_2C(O)]; <math>\delta_{\rm C}(CDCl_3)$ 19.7 (2 C, CH_3), 19.8 (2 C, CH_3), 26.0 (1 C, CH), 27.3 (1 C, CH), 45.3, 45.4, 46.7, 51.6, 52.4, 54.2, 55.2 [11 C, NCH_2 ring, NCH_2C(O), NCH_2CH] and 170.6 [1 C, C(O)N].

Triethyl 10-(Diisobutylcarbamoylmethyl)-1,4,7,10-tetraazacyclododecane-1,4,7-triyltrimethylenetri(methylphosphinate)

21.—Diethoxymethylphosphine (0.81 g, 5.95 mmol), followed immediately by paraformaldehyde (0.25 g, 8.32 mmol) were added to anhydrous THF (30 cm³) containing 20 (0.50 g, 1.47 mmol) at 100 °C under nitrogen. The solution was heated to reflux for 18 h at 100 °C with azeotropic removal of water by 4 Å molecular sieves, followed by filtration (to remove excess paraformaldehyde) and evaporation of the solvent to yield a pale yellow oil. Purification by alumina column chromatography (gradient elution 0-3% methanol in dichloromethane) afforded the title compound (0.58 g, 56%) as a pale yellow oil (Found: $M^+ + 1$, 702.4210. $C_{30}H_{66}N_5O_7P_3$ requires M, 701.4175; $\delta_{\rm H}$ (CDCl₃) 0.80 (6 H, d, J6.5, CH₃), 0.86 (6 H, d, J6.5, CH₃), 1.25 (9 H, t, ³J7.1, CH₂CH₃), 1.49 (9 H, d, ¹J13.7, PCH₃), 1.91 (2 H, m, CH), 2.20-3.80 [28 H, m, NCH₂ ring, NCH₂C(O), NCH₂P, NCH₂CH] and 4.01 (6 H, POCH₂); δ_{C} (CDCl₃) 13.6 (3 C, ¹J 90, PCH₃), 16.7 (3 C, ³J 5.4, OCH₂CH₃), 20.0 (4 C, CH₃), 26.3, 27.6 (2 C, CH), 50-57 [14 C, br, NCH₂ ring, NCH₂C(O), NCH₂P, NH₂CH], 60.1 (3 C, ²J 6.1, OCH₂) and 170.5 [1 C, C(O)N]; $\delta_{P}(CDCl_{3})$ 52.5 (br m).

10-(Diisobutylcarbamoylmethyl)-1,4,7,10-tetraazacyclododecane-1,4,7-triyltrimethylenetri(methylphosphinic Acid) 22.—An excess of 1 mol dm⁻³ aqueous KOH solution was added to the phosphinate ester 21, and the solution shaken to dissolve all of the compound. The solution was left overnight, the pH lowered to 5 by addition of acetic acid, and the solution passed down an H⁺ cation-exchange resin column. The solvent was removed to yield the title compound as a clear pale yellow solid, m.p. > 220 °C; $\delta_{\rm H}(\rm D_2O; pD = 4)$ 0.55–0.85 (12 H, m, CH₃), 0.92– 1.22 (9 H, m, PCH₃), 1.68–1.95 (2 H, m, CH), 2.25–3.50 (22 H, m, NCH₂ ring, NCH₂P), 2.92–3.17 (4 H, m, NCH₂/CH) and 3.17– 3.35 [2 H, m, CH₂C(O)N]; $\delta_{\rm P}(\rm D_2O; pD = 4)$ 27.8, 26.6 (ratio 2:1) (Found: M⁺, 618.330. C₂₄H₅₄N₅O₇P₃ requires *M*, 617.3236).

Triethyl 10-(Diisobutylcarbamoylmethyl)-1,4,7,10-tetraazacyclododecane-1,4,7-trivltriacetate 23.—To a stirred solution of 20 (0.15 g, 0.43 mmol) in anhydrous ethanol (10 cm³) under nitrogen was added potassium carbonate (0.18 g, 1.33 mmol) and ethyl bromoacetate (0.21 g, 1.24 mmol), and the solution refluxed at 80 °C for 18 h. The solvent was evaporated off, the residue was taken up in dichloromethane and filtered (to remove KBr and excess K_2CO_3), and the filtrate was evaporated to yield a pale yellow oil which was purified by alumina column chromatography. (Gradient elution 0-5% methanol in dichloromethane) to yield the title compound, as a pale yellow oil (0.18 g, 68%) (Found: $M^+ + 1$, 600.47. $C_{30}H_{57}N_5O_7$ requires M, 599.43); δ_H(CDCl₃) 0.82 (6 H, d, J 6.6, CH₃), 0.89 (6 H, d, J6.5, CH₃), 1.24(6 H, t, J7.1, CH₂CH₃), 1.25(3 H, t, J7.1, CH₂CH₃), 1.91 (2 H, m, CH), 2.15–3.90 [28 H, m, NCH, ring, NCH₂C(O)N, NCH₂CH, NCH₂CO₂] and 4.05-4.30 (6 H, m, OCH₂); $\delta_{\rm C}$ (CDCl₃) 13.9 (1 C, OCH₂CH₃), 14.0 (2 C, OCH₂CH₃), 19.7 (2 C, CH₃), 19.9 (2 C, CH₃), 26.1 (1 C, CH), 27.2 (1 C, CH), 46-56 [14 C, br, NCH₂ ring, NCH₂CO₂, NCH₂C(O)N, NCH₂CH], 60.8 (2 C, OCH₂), 61.0 (1 C, OCH₂), 170.9 [1 C, C(O)N], 173.0 (2 C, CO₂) and 173.3 (1 C, CO₂).

10-(Diisobutylcarbamoylmethyl)-1,4,7,10-tetraazacyclododecane-1,4,7-triyltriacetic Acid 24.—Hydrolysis of the ester 23 to the carboxylic acid was brought about by dissolving it in an excess of 1 mol dm⁻³ KOH solution (> three-fold excess) and leaving it for 18 h. Removal of the solvent yielded the acid and an excess of KOH which was removed by taking up the residues in ethanol (15 cm³) and filtering off the insoluble KOH solid. This process was repeated five times. $\delta_{\rm H}$ (D₂O; pD = 8) 0.76 (12 H, m, CH₃), 1.70–1.90 (2 H, m, CH), 2.00–3.23 [26 H, m, NCH₂ ring, NCH₂CO₂, NCH₂CH, NCH₂C(O)N] and 3.23–3.48 [2 H, br, NCH₂C(O)]; *m/z* (FAB) as for **24b**.

10-(Diisobutylcarbamoylmethyl)-1,4,7,10-tetraazacyclododecane-1,4,7-trivltriacetic Acid Trihydrobromide 24b.-To the phosphinate ester 24a (120 mg, 0.20 mmol) was added an excess of phenol (120 mg) and 40% v/w HBr in glacial acetic acid (20 cm³). The solution was heated at 100 °C for 2 days, an extra 15 cm³ of HBr in glacial acetic acid being added after the first day, and the solution was allowed to cool to effect precipitation of the product. The reaction mixture was centrifuged, and the solvent decanted off, to leave a pale white/brown solid which was washed with cold glacial acetic acid ($3 \times 15 \text{ cm}^3$), and diethyl ether $(3 \times 15 \text{ cm}^3)$, or until the washings were colourless). (All supernatants and washings were retained and combined.) The solid were taken up in water and filtered, the solvents evaporated off to yield a pale white solid. An equivalent volume of diethyl ether was added to the retained solvent and washings to yield further product, which was washed and filtered as before. The product was crystallised from ethanolether to yield a colourless solid, m.p. > 250 °C (65 mg, 43%); $\delta_{\rm H}({\rm D_2O}; \, {\rm pD}=2), \, 0.82 \, (12 \, {\rm H}, \, 2 \, \times \, {\rm d}, \, {\rm CH_3}), \, 1.8{-}2.1 \, (2 \, {\rm H}, \, {\rm m},$ CH) and 2.7-4.4 [28 H, m, CH₂ ring, NCH₂CO₂, NCH₂C(O)N, NCH₂CH] (Found: M^+ , 516.3334. C₂₄H₄₅N₅O₇ requires M, 515.3319).

Triethyl 10-[4-(4-Methoxyphenylsulfonamido)butylcarbamoylmethyl]-1,4,7,10-tetraazacyclododecane-1,4,7-triyltrimethylenetri(methylphosphinate) 25a.-Synthesis as for 21 using diethoxymethylphosphine (1.12 g, 8.23 mmol), paraformaldehyde (0.28 g, 9.33 mmol) and 19 (0.97 g, 2.06 mmol). Yield (1.41 g, 82%), as a pale yellow oil (Found: M⁺ + 1, 831.39. $C_{33}H_{65}N_6O_{10}P_3S$ requires *M*, 830.37); $\delta_{H}(CDCl_3)$ 1.24 (9 H, t + t, ³J 6.6, CH₂CH₃), 1.47 (13 H, two d + m, ²J 13.0, CH₂CH₂CH₂NHSO₂, PCH₃), 2.20-3.30 [28 H, m, CH₂ ring, NCH₂P, NCH₂C(O), CH₂NHSO₂, CH₂NHC(O)], 3.79 (3 H, s, OCH₃), 4.00 (6 H, dq + dq, ³J 6.8, OCH₂), 6.78 [1 H, t, C(O)NH], 6.88 (2 H, d, J 8.6, CHSCO₂), 7.72 (2 H, d, CHCOCH₃) and 7.91 (1 H, t, NHSO₂); $\delta_{\rm C}$ (CDCl₃) 13.1 (3 C, ¹J 89, PCH₃), 15.9 (3 C, ³J 5.6, OCH₂CH₃), 26.1, 25.9 (2 C, $CH_2CH_2CH_2NHSO_2$), 37.8 [1 C, $CH_2NHC(O)$], 41.8 (1 C, CH_2NHSO_2), 53.4–55.4 [12 C, br, CH_2 ring, NCH_2P , $NCH_2C(O)$], 54.8 (1 C, OCH_3), 59.4 (3 C, ²J 6.7, OCH_2), 113.2 (2 C, CHCSO₂), 128.1 (2 C, CHCOCH₃), 131.7 (1 C, CSO₂), 161.6 (1 C, COCH₃), and 170.6 [1 C, C(O)]; δ_{P} (CDCl₃) 52.0, 52.2 (2:1).

Triethyl 10-[4-(4-Methoxyphenylsulfonamido)butylcarbamoylmethyl]-1,4,7,10-tetraazacyclododecane-1,4,7-triyltrimethylenetri(butylphosphinate) **25b**.—As for **21** using **19** (0.21 g, 0.45 mmol), diethoxybutylphosphine (0.36 g, 2.02 mmol) and paraformaldehyde (0.08 g, 2.66 mmol). Yielded a pale yellow oil (331 mg, 78%) (Found: M⁺ + 1,957.499. C₄₂H₈₃N₆O₁₀P₃S requires *M*, 956.510); δ_H(CDCl₃) 0.87 (9 H, t, ³J 6.6, butyl CH₃), 1.26 (9 H, t, OCH₂CH₃), 1.32–1.68 (16 H, br m, PCH₂CH₂CH₂, CH₂CH₂CH₂NHSO₂), 1.68–1.80 (6 H, m, PCH₂CH₂), 2.32– 3.42 [28 H, m, NCH₂P, NCH₂ ring, CH₂NHSO₂, CH₂NHC(O), NCH₂C(O)], 3.81 (3 H, s, OCH₃), 4.03 (6 H, m, OCH₂) and 6.60 (1 H, s, NHSO₂); δ_P(CDCl₃) 54.5, 54.9 (2:1).

Triethyl 10-[4-(4-Methoxyphenylsulfanamido)butylcarbamo-

y/methy/]-1,4,7,10-tetraazacyclododecane-1,4,7-triy/trimethylenetri(benzy/phosphinate) **25c**.—As for **21**, using **19** (0.23 g, 0.49 mmol), diethoxybenzylphosphine (0.41 g, 1.93 mmol) and paraformaldehyde (0.08 g, 2.66 mmol). Yielded a pale yellow oil (298 mg, 58%); $\delta_{\rm H}$ (CDCl₃) 1.00–1.32 (9 H, m, OCH₂CH₃), 1.32– 1.56 (4 H, br m, CH₂CH₂CH₂NHSO₂), 2.00–2.98 [26 H, m, NCH₂ ring, NCH₂P, NCH₂C(O), CH₂NHC(O)], 2.98–3.35 (8 H, m, PCH₂C, CH₂NHSO₂), 3.76 (3 H, d, OCH₃), 3.79–4.17 (6 H, m, OCH₂), 6.40–6.80 [2 H, br s, C(O)NH, SO₂NH], 6.86 (2 H, d, J 10, CHCSO₂), 7.05–7.40 (15 H, m, ArH) and 7.71 (2 H, d, ³J 10, CHCOMe); $\delta_{\rm P}$ (CDCl₃) 49.1, 49.7 (2:1) (Found: M + 1, 1059.465. C₅₁H₇₇N₆O₁₀P₃S requires M, 1058.4635).

10-[(4-Aminobutyl)carbamoylmethyl]-1,4,7,10-tetraazacyclododecane-1,4,7-triyltrimethylenetri(methylphosphinic Acid) Trihydrobromide **26a**.—Method as for **24b** using **25a** (160 mg, 0.19 mmol). The product was crystallised from ethanol–ether to yield a colourless solid (as the 3 HBr salt) (140 mg, 89%) (Found: M⁺ + 1, 577.27. C₂₀H₄₇N₆O₇P₃ requires *M*, 576.27); $\delta_{\rm H}$ -(D₂O) 1.47 (9 H, d, ²J 14.4, PCH₃), 1.60 (4 H, m, CH₂CH₂CH₂NH₃⁺),2.98(2H,t,CH₂NH₃⁺),3.05–3.75[24 H, m, CH₂ ring, NCH₂P, NCH₂C(O)] and 4.00 [2 H, m, CH₂NHC(O)]; $\delta_{\rm C}$ (D₂O) 16.9 (3 C, ¹J89, PCH₃), 26.5, 27.5 [2 C, CH₂CH₂NH₃⁺, CH₂CH₂NHC(O)], 41.3, 41.5 [2 C, CH₂-NH₃⁺, CH₂NHC(O)], 52–56 (11 C, CH₂ ring NCH₂P), 57.6 [1 C, NCH₂C(O)] and 167.8 [1 C, NHC(O)].

10-[(4-Aminobutyl)carbamoylmethyl]-1,4,7,10-tetraazacyclododecane-1,4,7-triyltrimethylenetri(butylphosphinic Acid) Trihydrobromide **26b**.—Method as for **24b**, using **25b** (188 mg, 0.20 mmol). Yield (as the 3 HBr salt) (150 mg, 80%); $\delta_{H}(CD_{3}OD)$ 0.96 (9 H, t, ³J 6.74, CH₃), 1.30-2.50 [22 H, m, P(CH₂)₃, CH₂CH₂CH₂NH₃⁺], 2.90-4.50 [28 H, m, CH₂ ring, NCH₂P, NCH₂C(O), CH₂NH₃⁺, CH₂NHC(O)] (Found: M⁺ + 1, 703.423. C₂₉H₆₅N₆O₇P₃ requires M, 702.413).

10-[(4-Aminobutyl)carbamoylmethyl]-1,4,7,10-tetraazacyclododecane-1,4,7-triyltrimethylenetri(benzylphosphinic Acid)] Trihydrobromide **26c**.—Method as for **24b**, using **25c** (166 mg, 0.16 mmol). Yield (as the 3 HBr salt) (138 mg, 84%); $\delta_{\rm H}$ (CD₃OD) 1.55-1.90 (4 H, br, CH₂CH₂CH₂NH₃⁺), 2.70–4.10 [34 H, m, CH₂NH₃⁺, CH₂NHC(O), NCH₂ ring, NCH₂P, NCH₂C(O), PCH₂C] and 7.20–7.55 (15 H, m, benzyl H) (Found: M⁺ + 1, 805.370. C₃₈H₅₉N₆O₇P₃; *M*, requires 804.3658).

10-[4-(4-Methoxyphenylsulfonamido)butylcarbamoylmethyl]-1,4,7,10-tetraazacyclododecane-1,4,7-triyltrimethylenetri-(methylphosphinic Acid) 27.-Hydrolysis of the methylphosphinate ester 25a to the methylphosphinic acid was brought about as for 24a; $\delta_{H}(D_2O) 0.82-1.09$ (9 H, t + t, PCH₃), 1.15 (4 H, br s, CH₂CH₂CH₂NHSO₂), 1.90–2.70 [24 H, br, m, CH₂N ring, NCH₂P, NCH₂C(O)], 2.87 [4 H, br s, CH₂NHSO₂, CH₂NHC(O)], 3.60 (3 H, s, OCH₃), 6.80 (2 H, d, CHCSO₂) and 7.43 (2 H, d, CHCOCH₃); $\delta_{\rm C}({\rm D_2O})$ 19.5 (2 C, ¹J 89, PCH₃), 19.8 (1 C, ¹J 88, PCH₃), 28.9 [1 C, CH₂CH₂NHC(O)], 31.1 (1 C, CH₂CH₂NHSO₂), 41.5 [1 C, CH₂NHC(O)], 47.4 (1 C, CH2NHSO2), 53.4-61.0 [12 C, NCH2 ring, NCH2P, NCH2-C(O)], 58.0 (1 C, COCH₃), 116.3 (1 C, CHCSO₂), 130.8 (1 C, CHCOCH₃), 137.9 (1 C, CSO₂), 163.0 (1 C, COCH₃) and 175.6 [1 C, C(O)NH] (Found: M⁺ + 1, 747.280. C₂₇H₅₃N₆O₁₀P₃S requires M, 746.2757; δ_P(pH 14) 38.7, 39.2 (2:1).

Triethyl 10-[4-(4-Methoxyphenylsulfonamido)butylcarbamoylmethyl]-1,4,7-tetraazacyclododecane-1,4,7-triyltriacetate **28.** —As described using **19** (0.18 g, 0.38 mmol) potassium carbonate (0.19 g, 1.34 mmol) and ethyl bromoacetate (0.19 g, 1.14 mmol), to give the title compound, as a very pale yellow oil (0.16 g, 57%) (Found: M^+ , 728.43. $C_{33}H_{56}N_6O_{10}$ requires M, 728.38; $\delta_{H}(CDCl_3)$ 1.23 (9 H, t, J 7.0, OCH_2CH_3), 1.54 (4 H, $CH_2CH_2CH_2NH$), 1.80–3.80 [28 H, m, CH_2 ring, NCH_2CO_2 , $NCH_2C(O)N$, CH_2NHSO_2 , $CH_2NHC(O)$], 3.84 (3 H, s, OCH_3), 4.0–4.3 (6 H, m, OCH_2), 6.2–6.6 [1 H, br s, NCH(O)], 6.97 (2 H, d, $CHCSO_2$), 7.84 (2 H, d, $CHCOCH_3$) and 8.23 (1 H, t, SO_2NH_2); $\delta_C(CDCl_3)$ 14.0 (3 C, OCH_2CH_3), 25.7, 26.3 (2 C, $CH_2CH_2CH_2NHSO_2$), 38.5 [1 C, $CH_2NHC(O)$], 42.6 (1 C, CH_2NHSO_2), 46.5–57.5 [12 C, CH_2 ring, NCH_2CO_2 , $NCH_2C(O)N$], 55.4 (1 C, OCH_3), 61.0 (3 C, OCH_2), 113.8 (2 C, $CHCSO_2$), 129.0 (2 C, $CHCOCH_3$), 131.7 (1 C, CSO_2), 162.1 (1 C, $COCH_3$), 171.6 [1 C, C(O)N], 172.5 (1 C, CO_2), 173.0 (2 C, CO_2).

10-[(4-*Aminobutyl*)carbamoylmethyl]-1,4,7,10-tetraazacyclododecane-1,4,7-triyltriacetate **29**.—Method as for the formation of **24b** using the ester **28** (144 mg, 0.20 mmol), to give the title compound as an off-white solid as its trihydrobromide salt, m.p. > 210 °C (84 mg, 60%); $\delta_{\rm H}$ (D₂O) 1.40-2.85 (4 H, m, CH₂CH₂CH₂NH₃⁺), 2.96 (2 H, t, CH₂NH₃⁺) and 2.50-4.25 [26 H, m, CH₂ ring, NCH₂CO₂, NCH₂C(O)N, CH₂NHC(O)] (Found: M⁺ + 1, 472.261. C₂₀H₃₅N₆O₇ requires *M*, 471.257).

Synthesis of Yttrium and Gadolinium Complexes

 $H_3O^+[Y\cdot 1b]^-$.—Compound 1b (0.2 g, 0.24 mmol) was dissolved in water (10 cm^3) (pH = 1.5). Yttrium oxide (0.026 g, 0.12 mmol) was added to the solution and heated to reflux for 18 h to give a white precipitate. The pH of the solution was raised to 6-7 and the solution boiled for 1 h, cooled and filtered through a 0.45 µm filter (Millipore). The water was removed under vacuum to give a white solid, which was recrystallised from water to give the complex as its oxonium salt (0.18 g, 80%); $\delta_{\rm H}({\rm D_2O})$ 2.26 (4 H, br d, J 12, CH₂N ring, coupled to m at 3.46), 2.44 (4 H, dd, J 12), NCH₂P), 2.47 (4 H, d, J 16, ring CH₂N), 2.72 (4 H, dd, J 12.5, PCH₂Ph), 3.28 (4 H, d, J 16, CH₂N ring), 3.31 (4 H, dd, J 12.5, PCH₂Ph), 3.43 (4 H, dd, J 12, NCH₂P) and 3.46 (4 H, br d, CH₂N ring); $\delta_{P}(D_{2}O)$ 39.2 (d, $J_{\rm YP}$ 5.5); $\delta_{\rm C}({\rm D_2O})$ 39.79 (d, J 89, PCH₂), 54.07, 54.34, 56.96 (CH₂N), 59.29 (d, J 94, PCH₂N), 128.9, 131.08, 133.31, 133.24, 135.9 and 136.11 (Ar); m/z (FAB) 931 (100, M⁺ + 2) (Found: C, 47.2; H, 5.6; N, 5.35. C₄₀H₅₅N₄O₉P₄Y-4H₂O requires C, 47.1; H, 6.81; N, 5.49%); $\delta_{\rm Y}({\rm D_2O}) = +152.8$ (quintet, $J_{\rm YP}$ 5 Hz).

 $H_3O^+[Gd\cdot1b]^-$.—The complex was prepared using a method similar to that for the related yttrium complex and was recrystallised from water and isolated as the oxonium salt; m/z (FAB) 999 (100, M⁺ + 1) (Found: C, 44.4; H, 5.85; N, 5.0. $C_{40}H_{55}GdN_4O_9\cdot4H_2O$ requires: C, 44.1; H, 5.79; N, 5.14%).

[Y-24].—To a sample of the carboxylic acid 24 (142 mg, 0.28 mmol) in 10 cm³ of water at pH 2 (HCl) was added yttrium oxide (31 mg, 0.14 mmol). The solution was heated to reflux at 110 °C for 18 h after which the pH was raised to 6 (aqueous KOH) and the solution was heated to reflux for a further 45 min. After evaporation of the solvent, removal of any excess Y₂O₃ and ligand was effected by taking up the solid residues in methanol and filtering them through a 2-inch plug of alumina, using a large volume of methanol to ensure that all the complex had been washed through. However, fine alumina particles were also washed through, and these were removed by dissolving the products from the column in water and filtering through a 'Millipore' filter (0.45 μ m) to yield, on evaporation of the water, a colourless solid, m.p. > 200 °C (137 mg, 72%); $\delta_{\rm H}({\rm D_2O})$ 0.78 (6 H, d, J 6.9, CH₃), 0.82 (6 H, d, J 6.9, CH₃), 1.75–2.04 (2 H, m, CH) and 2.08-4.10 [28 H, m, CH₂ ring, NCH₂CO₂, NCH₂- C(O)N, NCH₂CH]; $\delta_{\rm C}({\rm D}_2{\rm O})$ 22.0, 22.2 (4 C, CH₃), 28.9, 29.7 (2 C, CH), 48.0, 48.1 (2 C, NCH₂CH), 55–60 (8 C, CH₂ ring), 64.5–66.5 [1 C, NCH₂C(O)N], 68.7 (3 C, NCH₂CO₂), 177.8 [1 C, C(O)N] and 183.0 (3 C, CO₂); $\delta_{\rm Y}({\rm D}_2{\rm O})$ +111.3; $\nu_{\rm max}({\rm Nujol})/{\rm cm}^{-1}$ 1607 (NCO; cf. 1640 for free ligand) (Found: M⁺, 601.215. C₂₄H₄₂N₅O₇Y requires: M, 601.214).

[Y-27].—Synthesis as described above, except for the use of 27 (289 mg, 0.39 mmol) and yttrium oxide (53 mg, 0.23 mmol), to give the complex as a colourless solid, m.p. > 200 °C (367 mg, 85%); $\delta_{\rm H}({\rm D}^2{\rm O})$ 1.24–1.60 [13 H, m, PCH₃, (CH₂)₂CH₂-NHSO₂], 2.19–2.93 (16 H, br m, CH₂ ring), 2.93–3.64 [12 H, br m, CH₂NHC(O), CH₂NHSO₂, NCH₂P, NCH₂C(O)], 3.77 (3 H, s, OCH₃), 7.01 (2 H, d, J 8.6, CHCSO₂) and 7.68 (2 H, d, J 8.6, CHCOCH₃); δ_C(D₂O) 18.8 (3 C, ¹J 106, PCH₃), 26.1 [1 C, CH₂CH₂NHC(O)], 28.6 (1 C, CH₂CH₂NHSO₂), 42.4 [1 C, br, CH₂NHC(O)], 44.9 (1 C, CH₂NHSO₂), 51-62 [12 C, br, CH₂ ring, NCH₂P, NCH₂C(O)], 56.2 (1 C, OCH₃), 117.4 (2 C, CHCSO₂), 131.7 (2 C, CHCOCH₃), 132.8 (1 C, CSO₂), 165.3 (1 C, COCH₃) and 183.9 [1 C, C(O)NH]; $\delta_{P}(D_2O)$ 44.63, 43.13, 42.91 (ratio 1:1:1, \bar{J}_{YP} 5.1); $\delta_{Y}(H_2O)$ +151.9 (Found: M^+ , 832.1601. $C_{27}H_{50}N_6O_{10}P_3SY$ requires *M*, 832.1580).

[Y-8c].—The ligand 8c (0.25 g, 9.07×10^{-4} mol) was dissolved in water (15 cm³) and the pH was adjusted to 1.5-2.0 with dilute hydrochloric acid. Yttrium oxide (0.05 g, $2.03 \times$ 10^{-1}) was added and the cloudy solution was heated to reflux to give a clear solution. The pH of the solution was raised to 7.0 with potassium hydroxide solution. The solution was filtered through 0.45 µm (Millipore) filters. The water was removed under reduced pressure and the product was purified by means of alumina column chromatography (10% methanol-dichloromethane, $R_{\rm f} = 0.5$), to yield a colourless solid, m.p. >200 °C (0.24 g, 85%); $\delta_{\rm H}(\rm D_2O)$ 0.76 (6 H, t + t, ²J 4, CH₂CH₃), 1.18 $(4 \text{ H}, \text{ tq}, CH_2CH_2), 1.31, 1.33, 1.34 (9 \text{ H}, d + d + d, PCH_3),$ J_{P-Me} 14.6), 1.50 (4 H, br m, NCH₂CH₂), 2.41 (1 H, d, J 13.5, CHN, coupled to m at ca. 3.45), 2.45 (2 H, dd, CHN ring, coupled to CHN protons in m, at ca. 3.45), 2.63 (3 H, br m, ring CHN), 2.69 (3 H, dd, NCHP), 2.97 (1 H, dd, CHN, coupled to ring proton at 2.63), 3.36 (1 H, m, ring CH_aH_bN), 3.39-3.50 (6 H, m, ring CHN), 3.58 (3 H, dd, CHP), 3.65 (1 H, m, CH_aH_bN ring), 3.67 (1 H, d, J 16.5, CHNCO) and 4.20 (1 H, d, J 16.5, CHNCO); $\delta_{\rm P}({\rm D}_2{\rm O})$, 43.16, 44.45, 43.8 (d + d + d, ² $J_{\rm YP}$ 5.1 Hz); $\delta_{\rm C}({\rm D}_2{\rm O})$ $15.94 (d, {}^{3}J9, CH_{2}CH_{3}), 18.6, 18.79, 18.84 (d + d + d, J_{PC}97),$ 22.34 (d, ${}^{3}J$ 7.5, CH₂CH₃), 31.7, 32.4 (s, NCH₂CH₂), 50.27, 50.99 (s, NCH) 51.71, 53.9, 54.06, 54.18, 54.3, 56.49, 56.74 (s, NCH₂ ring), 59.04 (d, ²J_{PC} 95, NCH₂P), 60.41 (s, NCH₂CO) and 176.45 (s, C=O); m/z (FAB) 704 (100, M⁺ + 1) (Found: C, 38.8; H, 7.8; N, 9.1. C₂₄H₅₁N₅O₇P₃Y·2H₂O requires C, 38.91; H, 7.59; N, 9.27%).

The following complexes were prepared in an analogous manner.

[8a·Gd] (Found: $M^+ + 1$, 772.551. $C_{24}H_{51}GdN_5O_7P_3$ requires *M*, 771.550) (Found: C, 35.4; H, 7.0; N, 8.3. $C_{24}H_{51}$ -GdN₅O₇P₃·2H₂O requires C, 35.7; H, 6.81; N, 8.67%).

[9c·Gd] (Found: $M^+ + 1$, 841.195. $C_{30}H_{47}GdN_5O_7P_3$ requires *M*, 840.193) (Found: C, 40.0; H, 6.0; N, 7.5. $C_{30}H_{47}$ -GdN₅O₇P₃·3H₂O requires: C, 40.3; H, 5.93; N, 7.83%).

[10c·Gd] (Found: $M^+ + 1$, 801.250. $C_{26}H_{55}GdN_5O_7P_3$ requires *M*, 800.256) (Found: C, 37.0; H, 7.3; N, 8.05. $C_{26}H_{55}GdN_5O_7P_3\cdot 2H_2O$ requires: C, 37.3; H, 7.05; N, 8.37%).

Acknowledgements

We thank the MRC for support (K. P., L. R.) and the SERC for a studentship (T. J. N.).

Appendix

Fitting the curve in Fig. 2 ($\delta_P vs. pH$ for [Y-1b]⁻) (a) One ionisation:

$$\begin{bmatrix} YL^{-} \end{bmatrix} + H_{3}O^{+} \rightleftharpoons [YLH] \\ \delta P_{0} \end{bmatrix}$$

$$K_{a} = \frac{[YL^{-}][H_{3}O^{+}]}{[YLH]} \equiv \frac{[A^{-}][H^{+}]}{[HA]}$$

$$\delta P = \frac{[A^{-}]\delta P_{0} + [HA]\delta P_{1}}{[A^{-}] + [HA]}$$

$$= \frac{\frac{1}{[H^{+}]}\delta P_{0} + \frac{1}{K_{a}}\delta P_{1}}{\frac{[A^{-}] + [HA]}{[H^{+}][A^{-}]}}$$

$$\frac{\frac{1}{[H^{+}]}\delta P_{0} + \frac{1}{K_{a}}\delta P_{1}}{\frac{1}{[H^{+}]} + \frac{1}{K_{a}}}$$

$$pH = -\log[H^{+}] \rightarrow H^{+} = 10^{-pH}$$

$$\therefore \delta P = \frac{10^{pH}\delta P_{0} + \frac{1}{K_{a}}\delta P_{1}}{10^{pH} + \frac{1}{K_{a}}}$$

(b) Two ionisations:

ſ

K 1

$$YL^{-}] + H_{3}O^{+} \stackrel{\text{ML}}{\Longrightarrow} [YLH] + H_{3}O^{+} \stackrel{\text{ML}}{\Longrightarrow} [YLH_{2}^{+}]$$

$$\stackrel{\delta P_{0}}{[A^{-}]} \stackrel{\delta P_{1}}{[HA]} \stackrel{\delta P_{2}}{[H_{2}A^{+}]}$$

$$\delta P = \frac{\delta P_{0}[A^{-}] + \delta P_{1}[HA] + \delta P_{2}[H_{2}A^{+}]}{[A^{-}] + [HA] + [H_{2}A^{+}]} \qquad (1)$$

$$K_{a}1 = \frac{[YL^{-}][H^{+}]}{[YLH]} \quad K_{a}2 = \frac{[YLH][H^{+}]}{[YLH_{2}^{+}]}$$

$$K_{a}1 = \frac{[A^{-}][H^{+}]}{[HA]} \quad K_{a}2 = \frac{[HA][H^{+}]}{[H_{2}A^{+}]}$$

47

divide (1) across by [A⁻][HA][H⁺]:

$$\delta P = \frac{\delta P_{0} \left(\frac{1}{[HA][H^{+}]}\right) + \delta P_{1} \left(\frac{[HA]}{[HA][A^{-}][H^{+}]}\right) + \delta P_{2} \left(\frac{[H_{2}A^{+}]}{[HA][A^{-}][H^{+}]}\right)}{\frac{[A^{-}] + [HA] + [H_{2}A^{+}]}{[A^{-}][HA][H^{+}]}}$$
$$= \frac{\delta P_{0} \left(\frac{1}{[HA][H^{+}]}\right) + \delta P_{1} \left(\frac{1}{[HA]K_{a}1}\right) + \delta P_{2} \left(\frac{1}{[A^{-}]K_{a}2}\right)}{\frac{1}{[HA][H]} + \frac{1}{[A^{-}][H^{+}]} + \frac{[H_{2}A^{+}]}{[A^{-}][HA][H^{+}]} \frac{1}{K_{a}2}} (2)$$

multiply (2) above and below by [H⁺][HA]:

$$\delta \mathbf{P} = \frac{\delta \mathbf{P}_{0} + \delta \mathbf{P}_{1}(\mathbf{H}^{+}/K_{a}1) + \delta \mathbf{P}_{2}\left(\frac{[\mathbf{H}^{+}][\mathbf{H}\mathbf{A}]}{[\mathbf{A}^{-}][K_{a}2]}\right)}{1 + \frac{[\mathbf{H}\mathbf{A}]}{[\mathbf{A}^{-}]} + \frac{[\mathbf{H}^{+}][\mathbf{H}\mathbf{A}]}{[\mathbf{A}^{-}]\cdot K_{a}2}}$$
(3)

divide (3) above and below by $[H^+]^2$:

$$\delta \mathbf{P} = \frac{\delta \mathbf{P}_0 \left(\frac{1}{[\mathbf{H}^+]^2}\right) + \delta \mathbf{P}_1 \left(\frac{1}{[\mathbf{H}^+] \cdot [K_{\bullet} \mathbf{1}]}\right) + \delta \mathbf{P}_2 \left(\frac{1}{K_{\bullet} \mathbf{1} \cdot K_{\bullet} 2}\right)}{\frac{1}{[\mathbf{H}^+]^2} + \left(\frac{1}{K_{\bullet} \mathbf{1} \cdot [\mathbf{H}^+]}\right) + \left(\frac{1}{K_{\bullet} \mathbf{1} \cdot K_{\bullet} 2}\right)}$$

The best fit (0.008%) error for the expression based on one ionisation gave:

$$\delta P_0 = 43.24 \text{ ppm}; \frac{1}{K_a} = 5.78; \delta P_1 = 52.79; R = 0.979.$$

For two successive ionisations, the best fit (0.008% allowable error) gave:

$$\delta P_0 = 43.398; \ \delta P_1 = 44.65; \ \delta P_2 = 50.43; \ pK_a 1 = 1.277; pK_a 2 = 1.155. R = 0.988.$$

References

- D. Parker, Chem. Soc. Rev., 1990, 19, 271. For related work: A. Harrison, D. Parker, C. A. Walker, K. A. Pereira, L. Royle, R. C. Matthews and A. S. Craig, Nucl. Med. Commun., 1992, 13, 677; A. Harrison, C. A. Walker, D. Parker, J. P. L. Cox, K. Jankowski, J. Sansom, M. A. W. Eaton and N. R. A. Beeley, Int. J. Nucl. Med. Biol., 1991, 18, 469.
- 2 J. R. Morphy, R. Kataky, D. Parker, M. A. W. Eaton, R. Alexander, A. T. Millican, A. Harrison and C. A. Walker, J. Chem. Soc., Perkin Trans. 2, 1990, 573; J. R. Morphy, M. A. W. Eaton, D. Parker, R. Titmas, A. T. Millican and D. Weatherby, J. Chem. Soc., Chem. Commun., 1988, 156.
- 3 A.S. Craig, I. M. Helps, K. J. Jankowski, D. Parker, M. A. W. Eaton, A. T. Millican and S. K. Rhind, J. Chem. Soc., Chem. Commun., 1989, 794.
- 4 J. P. L. Cox, K. J. Jankowski, R. Kataky, D. Parker, N. R. A. Beeley, B. A. Boyce, M. A. W. Eaton, K. Millar, A. T. Millican, A. Harrison and C. A. Walker, J. Chem. Soc., Chem. Commun., 1989, 797.
- 5 C. J. Broan, J. P. L. Cox, A. S. Craig, R. Kataky, D. Parker, G. Ferguson, A. Harrison and A. M. Randall, J. Chem. Soc., Perkin Trans. 2, 1991, 87.
- 6 R. B. Lauffer, Chem. Rev., 1987, 87, 901.
- 7 P. Pavone, G. Parrizio, C. Buoni, E. Tettemanti, R. Passariello, C. Musu, P. Tirone and E. Felder, *Radiology*, 1990, **176**, 61.
- 8 A. Muhler, O. Clement, V. Vexler, Y. Berthezene, W. Rosenau and R. D. Brasch, *Radiology*, 1992, 184, 207; H. Weirmann, G. Schuhmann-Giampieri, H. Schmitt-Willich, H. Vogler, T. Frenzel and H. Gries, *Magn. Reson. Imaging*, 1991, 22, 233.
- 9 A. Harrison, C. A. Walker, K. A. Pereira, D. Parker, L. Royle, K. Pulukkody and T. J. Norman, *Magn. Reson. Imag.*, 1993, in the press. See also: D. Parker and N. R. A. Beeley, *Eur. Pat. Appl.*, EPO 455-380-A2, 1991.
- 10 C. J. Broan, K. J. Jankowski, R. Kataky and D. Parker, J. Chem. Soc., Chem. Commun., 1990, 1738.

- 11 C. J. Broan, K. J. Jankowski, R. Kataky, D. Parker, A. M. Randall and A. Harrison, J. Chem. Soc., Chem. Commun., 1990, 1739; 1991, 204; E. Cole, D. Parker, G. Ferguson, J. F. Gallagher and B. Kaitner, J. Chem. Soc., Chem. Commun., 1991, 1473.
- 12 D. Parker, K. Pulukkody, T. J. Norman, A. Harrison, L. Royle and C. Walker, J. Chem. Soc., Chem. Commun., 1992, 1441.
- 13 C. J. Broan, E. Cole, K. J. Jankowski, D. Parker, K. Pulukkody, B. A. Boyce, N. R. A. Beeley, K. Millar and A. T. Millican, *Synthesis*, 1992, 63.
- 14 J.-J. Yaouanc, N. Le Bris, G. Le Gall, J.-C. Clement, H. Handel and H. des Abbayes, J. Chem. Soc., Chem. Commun., 1991, 206.
- 15 For example **26a** may react with bis-*p*-nitrophenylsuccinate (DMSO, Et₃N, 20 °C) to give the related active ester: T. J. Norman and D. Parker, unpublished observations using methods described in ref. 13.
- 16 M. K. Moi, C. F. Meares and S. J. DeNardo, J. Am. Chem. Soc., 1988, 110, 6266; O. A. Gansow and K. Kumar, U.S. Pat. 4,923,985 (1989). See also: D. Parker and A. T. Millican, Int. Pat. Appl., WO 89,01,476 (priority February 1987).
- 17 J. P. L. Cox, A. S. Craig, K. J. Jankowski, D. Parker, I. M. Helps, N. R. A. Beeley, B. A. Boyce, K. Millar, A. T. Millican and M. A. W. Eaton, J. Chem. Soc., Perkin Trans. 1, 1990, 2567.
- 18 The structure has been determined (A. Batsanov, J. A. K. Howard, D. Parker and K. Pulukkody, unpublished results) for [H₃O⁺][Y·1b]⁻ ·4H₂O and is currently being refined. The lack of any yttrium-bound water accords with a relaxivity value (Γ₁) of 2.09 dm³ mmol⁻¹ s⁻¹ measured (1.5 T) for [Y·1d]⁻. Such a value (cf. values of 3.5–3.8 dm³ mmol⁻¹ s⁻¹ for Gd·DOTA or Gd·DTPA with one bound water molecule) is typical of a complex with no metal-bound water molecules.⁶
- 19 H. G. Brittain and J. F. Desreux, Inorg. Chem., 1984, 23, 4459.
- 20 S. Aimé, M. Botta and G. Ermondi, *Inorg. Chem.*, 1992, 31, 4291. See also X. Wang, T. Jin, V. Comblin, A. Lopez-Mut, E. Merciny and J. F. Desreux, *Inorg. Chem.*, 1992, 31, 1095.
- 21 Calculations were performed using a MacIntosh SE-30 running Kaleidagraph. Attempts to fit the observed variation of δ_p with pH to a simple mono-protonation step were less successful. Details of the models used for these calculations are given in the Appendix.
 22 For recent examples of ⁸⁹Y NMR: R. C. Holz and W. D. Horrocks, J.
- 22 For recent examples of ⁸⁹Y NMR: R. C. Holz and W. D. Horrocks, J. Magn. Reson., 1990, 89, 627; D. L. Reger, J. A. Linderman and L. Lebioda, Inorg. Chem., 1988, 27, 1980.
- 23 Using the methods defined by *inter alia*, Sherry *et al.*; W. Cacheris, S. K. Nichle and A. D. Sherry, *Inorg. Chem.*, 1987, 26, 958. See also A. E. Martell and E. J. Clarke, *Inorg. Chim. Acta*, 1991, 190, 27.
- 24 As confirmed by numerous MRI images obtained in rats: I. Rowland, M. Leach and D. Parker, unpublished observations.

Paper 2/06477D Received 4th December 1992 Accepted 23rd December 1992